Skip to main content

Motorische Neurorehabilitation

  • Living reference work entry
  • First Online:
Bewegung, Training, Leistung und Gesundheit

Zusammenfassung

Motorische Störungen bei neurologischen Erkrankungen äußern sich in verschiedenen Formen. Nach einer abrupten Schädigung des Nervensystems erholt sich die motorische Leistungsfähigkeit vor allem während einer 3- bis 6-monatigen sensitiven Periode mit einer hohen neuronalen Plastizität. In dieser Phase wirkt Spontanerholung gleichzeitig mit trainingsinduzierter Reorganisation und – auch über diese Periode hinaus – motorischem Lernen. Forschung in dem Bereich sollte die Erholungsprozesse und die den verschiedenen Therapieformen zugrunde liegenden neuronalen Mechanismen definieren, um Interventionen zu optimieren.

Dieser Beitrag ist Teil der Sektion Sportmotorik, herausgegeben von den Teilherausgebern Alfred Effenberg und Gerd Schmitz, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Ackermann, H. (2010). Ataxien: Assessment und Management. In P. Frommelt & H. Lösslein (Hrsg.), NeuroRehabilitation: Ein Praxisbuch für interdisziplinäre Teams (S. 294–302). Berlin: Springer.

    Google Scholar 

  • Allman, C., Amadi, U., Winkler, A. M., Wilkins, L., Filippini, N., Kischka, U., Stagg, C. J., & Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science Translational Medicine, 8(330), 330–331. https://doi.org/10.1126/scitranslmed.aad5651.

    Article  CAS  Google Scholar 

  • Amatya, B., Khan, F., Ng, L., & Galea, M. (2017). Rehabilitation for people with multiple sclerosis: an overview of Cochrane systematic reviews. The Cochrane Database of Systematic Reviews, (7), CD012732. https://doi.org/10.1002/14651858.CD012732.

  • Anderson, D. I., Magill, R. A., & Sekiya, H. (2001). Motor learning as a function of KR schedule and characteristics of task- intrinsic feedback. Journal of Motor Behavior, 33(1), 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Barbay, S., Plautz, E. J., Friel, K. M., Frost, S. B., Dancause, N., Stowe, A. M., & Nudo, R. J. (2006). Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Experimental Brain Research, 169(1), 106–116. https://doi.org/10.1007/s00221-005-0129-4.

    Article  PubMed  Google Scholar 

  • Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience. In Brain control of movement (Bd. 3). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Bensmail, D., Sarfeld, A. S., Ameli, M., Fink, G. R., & Nowak, D. A. (2012). Arbitrary visuomotor mapping in the grip-lift task: Dissociation of performance deficits in right and left middle cerebral artery stroke. Neuroscience. https://doi.org/10.1016/j.neuroscience.2012.03.015.

  • Bernhardt, J., Langhorne, P., Lindley, R. I., Thrift, A. G., Ellery, F., Collier, J., Churilov, L., Moodie, M., Dewey, H., & Donnan, G. (2015). Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): A randomised controlled trial. Lancet, 386(9988), 46–55.

    Article  Google Scholar 

  • Bernhardt, J., Churilov, L., Ellery, F., Collier, J., Chamberlain, J., Langhorne, P., Lindley, R. I., Moodie, M., Dewey, H., & Thrift, A. G. (2016). Prespecified dose-response analysis for a very early rehabilitation trial (AVERT). Neurology, 86(23), 2138–2145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernhardt, J., Hayward, K. S., Kwakkel, G., Ward, N. S., Wolf, S. L., Borschmann, K., Krakauer, J. W., Boyd, L. A., Carmichael, S. T., Corbett, D., & Cramer, S. C. (2017). Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabilitation and Neural Repair, 31(9), 793–799. https://doi.org/10.1177/1545968317732668.

    Article  PubMed  Google Scholar 

  • Biernaskie, J., Chernenko, G., & Corbett, D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. Journal of Neuroscience, 24(5), 1245–1254. https://doi.org/10.1523/jneurosci.3834-03.2004.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, L. A., Quaney, B. M., Pohl, P. S., & Winstein, C. J. (2007). Learning implicitly: Effects of task and severity after stroke. Neurorehabilitation and Neural Repair, 21(5), 444–454. https://doi.org/10.1177/1545968307300438.

    Article  PubMed  Google Scholar 

  • Brüggemann, S., Sewöster, D., & Kranzmann, A. (2018). Bewegungstherapeutische Versorgung in der medizinischen Rehabilitation der Rentenversicherung – eine Analyse auf Basis quantitativer Routinedaten. Die Rehabilitation, 57(1), 24–30.

    Google Scholar 

  • Brunner, I., Skouen, J. S., Hofstad, H., Aßmus, J., Becker, F., Sanders, A.-M., Pallesen, H., Kristensen, L. Q., Michielsen, M., & Thijs, L. (2017). Virtual reality training for upper extremity in subacute stroke (VIRTUES) a multicenter RCT. Neurology. https://doi.org/10.1212/WNL.0000000000004744.

  • Buck, M., Beckers, D., & Adler, S. S. (2013). PNF in der Praxis: eine Anleitung in Bildern. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P., & Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125(Pt 4), 773–788.

    Article  PubMed  Google Scholar 

  • Censor, N., Buch, E. R., Nader, K., & Cohen, L. G. (2015). Altered human memory modification in the presence of normal consolidation. Cerebral Cortex. https://doi.org/10.1093/cercor/bhv180.

  • Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, E. R., Moudgal, R., Lang, K., Hyacinth, H. I., Awosika, O. O., Kissela, B. M., & Feng, W. (2017). Early rehabilitation after stroke: A narrative review. Current Atherosclerosis Reports, 19(12), 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbetta, D., Sirtori, V., Castellini, G., Moja, L., & Gatti, R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database of Systematic Review, 10, CD004433. https://doi.org/10.1002/14651858.CD004433.pub3.

    Article  Google Scholar 

  • Cortes, J. C., Goldsmith, J., Harran, M. D., Xu, J., Kim, N., Schambra, H. M., Luft, A. R., Celnik, P., Krakauer, J. W., & Kitago, T. (2017). A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabilitation and Neural Repair, 31(6), 552–560. https://doi.org/10.1177/1545968317697034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Criscimagna-Hemminger, S. E., Bastian, A. J., & Shadmehr, R. (2010). Size of error affects cerebellar contributions to motor learning. Journal of Neurophysiology, 103(4), 2275–2284. https://doi.org/10.1152/jn.00822.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V., Stowe, A. M., & Nudo, R. J. (2005). Extensive cortical rewiring after brain injury. Journal of Neuroscience, 25(44), 10167–10179. https://doi.org/10.1523/jneurosci.3256-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Deroost, N., Kerckhofs, E., Coene, M., Wijnants, G., & Soetens, E. (2006). Learning sequence movements in a homogenous sample of patients with Parkinson’s disease. Neuropsychologia, 44(10), 1653–1662. https://doi.org/10.1016/j.neuropsychologia.2006.03.021.

    Article  PubMed  Google Scholar 

  • Dettmers, C., & Nedelko, V. (2009). Mentales Training bei motorischen Störungen nach Schlaganfall.

    Google Scholar 

  • Dockx, K., Bekkers, E. M., Van den Bergh, V., Ginis, P., Rochester, L., Hausdorff, J. M., Mirelman, A., & Nieuwboer, A. (2016). Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews, (12):CD010760. https://doi.org/10.1002/14651858.CD010760.pub2. PMID: 28000926; PMCID: PMC6463967.

  • Dohle, C. (2011). Spiegeltherapie. In J. Mehrholz (Hrsg.), Neuroreha nach Schlaganfall. Stuttgart: Georg Thieme.

    Google Scholar 

  • Dohle, C., Morkisch, N., Lommack, R., & Kadow, L. (2011). Spiegeltherapie. Neuroreha, 3(4), 184–190.

    Article  Google Scholar 

  • Donchin, O., Rabe, K., Diedrichsen, J., Lally, N., Schoch, B., Gizewski, E. R., & Timmann, D. (2012). Cerebellar regions involved in adaptation to force field and visuomotor perturbation. Journal of Neurophysiology, 107(1), 134–147. https://doi.org/10.1152/jn.00007.2011.

    Article  PubMed  Google Scholar 

  • Dong, Y., Winstein, C. J., Albistegui-DuBois, R. M., & Dobkin, B. H. (2007). Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: A pilot study. Neurorehabilitation and Neural Repair, 21(5), 412–428. https://doi.org/10.1177/1545968306298598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dovern, A., Fink, G. R., Saliger, J., Karbe, H., Koch, I., & Weiss, P. H. (2011). Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. The Journal of Neuroscience, 31(22), 8102–8108. https://doi.org/10.1523/JNEUROSCI.6585-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dovern, A., Niessen, E., Ant, J. M., Saliger, J., Karbe, H., Fink, G. R., Koch, I., & Weiss, P. H. (2017). Timing independent spatial motor sequence learning is preserved in left hemisphere stroke. Neuropsychologia, 106, 322–327. https://doi.org/10.1016/j.neuropsychologia.2017.09.030.

    Article  PubMed  Google Scholar 

  • Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.

    Article  PubMed  Google Scholar 

  • Dromerick, A. W., Lang, C. E., Birkenmeier, R. L., Wagner, J. M., Miller, J. P., Videen, T. O., Powers, W. J., Wolf, S. L., & Edwards, D. F. (2009). Very early constraint-induced movement during stroke rehabilitation (VECTORS): A single-center RCT. Neurology, 73(3), 195–201. https://doi.org/10.1212/WNL.0b013e3181ab2b27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M. E., Bobeuf, F., Lafontaine, A. L., Lungu, O., Bherer, L., & Doyon, J. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. Neuroimage Clinical, 12, 559–569. https://doi.org/10.1016/j.nicl.2016.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersbach, G., & Wissel, J. (2002). Parkinsonkrankheit und Dystonie. In P. Frommelt & H. Lösslein (Hrsg.), NeuroRehabilitation. Ein Praxisbuch für interdisziplinäre Teams (S. 712–736). Berlin: Springer.

    Google Scholar 

  • Eidenmüller, S., Randerath, J., Goldenberg, G., Li, Y., & Hermsdorfer, J. (2014). The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects. Neuropsychologia, 61, 222–234. https://doi.org/10.1016/j.neuropsychologia.2014.06.026.

    Article  PubMed  Google Scholar 

  • Fries, W., & Freivogel, S. (2011). Motorische rehabilitation. In P. Frommelt & H. Lösslein (Hrsg.), NeuroRehabilitation: Ein Praxisbuch für interdisziplinäre Teams (S. 226–259). Berlin: Springer.

    Google Scholar 

  • Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008). Remodeling the brain: Plastic structural brain changes produced by different motor therapies after stroke. Stroke, 39(5), 1520–1525. https://doi.org/10.1161/strokeaha.107.502229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon, A. M., Westling, G., Cole, K. J., & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. Journal of Neurophysiology, 69(6), 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  • Grefkes, C., & Ward, N. S. (2014). Cortical reorganization after stroke: How much and how functional? Neuroscientist, 20(1), 56–70. https://doi.org/10.1177/1073858413491147.

    Article  PubMed  Google Scholar 

  • Grefkes, C., Nowak, D. A., Eickhoff, S. B., Dafotakis, M., Kust, J., Karbe, H., & Fink, G. R. (2008). Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of Neurology, 62(2), 236–246. https://doi.org/10.1002/ana.21228.

    Article  Google Scholar 

  • Gulde, P., Hughes, C. M. L., & Hermsdörfer, J. (2017). Effects of stroke on ipsilesional end-effector kinematics in a multi-step activity of daily living. Frontiers in Human Neuroscience, 11, 42. https://doi.org/10.3389/fnhum.2017.00042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamoudi, M., Schambra, H. M., Fritsch, B., Schoechlin-Marx, A., Weiller, C., Cohen, L. G., & Reis, J. (2018). Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabilitation and Neural Repair, 32(4–5), 295–308. https://doi.org/10.1177/1545968318769164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwick, R. M., Rajan, V. A., Bastian, A. J., Krakauer, J. W., & Celnik, P. A. (2017). Motor learning in stroke: Trained patients are not equal to untrained patients with less impairment. Neurorehabilitation and Neural Repair, 31(2), 178–189. https://doi.org/10.1177/1545968316675432.

    Article  PubMed  Google Scholar 

  • Hermsdörfer, J. (2002). Bewegungsmessung zur Analyse von Handfunktionen. Vorschlag einer standardisierten Untersuchung. EKN – Beiträge für die Rehabilitation. Norderstedt: Books on Demand.

    Google Scholar 

  • Hesse, S., & Liepert, J. (2004). Rehabilitation spezieller neurologischer Syndrome. In G. Nelles (Hrsg.), Neurologische rehabilitation (S. 74–87). Stuttgart: Georg Thieme.

    Google Scholar 

  • Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., van der Smagt, P., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375. https://doi.org/10.1038/nature11076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosp, J. A., Triem, S., & Luft, A. R. (2010). Neurorehabilitation und Plastizität nach Schlaganfall. Journal für Neurologie, Neurochirurgie und Psychiatrie, 11(1), 32–35.

    Google Scholar 

  • Humm, J. L., Kozlowski, D. A., James, D. C., Gotts, J. E., & Schallert, T. (1998). Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Research, 783(2), 286–292.

    Article  CAS  PubMed  Google Scholar 

  • Hummel, F. C. (2017). The importance of neuronal networks for motor rehabilitation after a stroke. Nervenarzt, 88(8), 850–857. https://doi.org/10.1007/s00115-017-0369-0.

    Article  CAS  PubMed  Google Scholar 

  • International Bobath Instructors Training Association (IBITA). An international association for adult neurological rehabilitation. http://www.ibita.org/. Zugegriffen am 11.05.2018.

  • International Proprioceptive Neuromuscular Facilitation Association (IPNFA). http://www.ipnfa.org/. Zugegriffen am 11.05.2018.

  • Jorgensen, H. S., Nakayama, H., Raaschou, H. O., Vive-Larsen, J., Stoier, M., & Olsen, T. S. (1995). Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 76(5), 406–412.

    Article  CAS  PubMed  Google Scholar 

  • Kal, E., Winters, M., van der Kamp, J., Houdijk, H., Groet, E., van Bennekom, C., & Scherder, E. (2016). Is implicit motor learning preserved after stroke? A systematic review with meta-analysis. PLoS One, 11(12), e0166376. https://doi.org/10.1371/journal.pone.0166376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. In Handbook of clinical neurology (Bd. 110, S. 93–103). Amsterdam: Elsevier.

    Google Scholar 

  • Knott, M., & Voss, D. E. (1968). Proprioceptive neuromuscular facilitation: Patterns and techniques. New York: Hoeber Medical Division, Harper & Row.

    Google Scholar 

  • Kollen, B. J., Lennon, S., Lyons, B., Wheatley-Smith, L., Scheper, M., Buurke, J. H., Halfens, J., Geurts, A. C., & Kwakkel, G. (2009). The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence? Stroke, 40(4), e89–e97.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84–90.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Carmichael, S. T., Corbett, D., & Wittenberg, G. F. (2012). Getting neurorehabilitation right: What can be learned from animal models? Neurorehabilitation and Neural Repair, 26(8), 923–931. https://doi.org/10.1177/1545968312440745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwakkel, G., Kollen, B., & Twisk, J. (2006). Impact of time on improvement of outcome after stroke. Stroke, 37(9), 2348–2353. https://doi.org/10.1161/01.STR.0000238594.91938.1e.

    Article  PubMed  Google Scholar 

  • Lance, J. W. (1980). The control of muscle tone, reflexes, and movement Robert Wartenbeg Lecture. Neurology, 30(12), 1303–1303.

    Article  CAS  PubMed  Google Scholar 

  • Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(8), 741–754.

    Article  PubMed  Google Scholar 

  • Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. Lancet, 377(9778), 1693–1702. https://doi.org/10.1016/s0140-6736(11)60325-5.

    Article  PubMed  Google Scholar 

  • Larson, P. S. (2014). Deep brain stimulation for movement disorders. Neurotherapeutics, 11(3), 465–474. https://doi.org/10.1007/s13311-014-0274-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (11):CD008349. https://doi.org/10.1002/14651858.CD008349.pub4. PMID: 29156493; PMCID: PMC6485957.

  • Li, Y., Wei, Q., Gou, W., & He, C. (2018). Effects of mirror therapy on walking ability, balance and lower limb motor recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Clinical Rehabilitation. https://doi.org/10.1177/0269215518766642.

  • Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E., & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31(6), 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  • Marinelli, L., Quartarone, A., Hallett, M., Frazzitta, G., & Ghilardi, M. F. (2017). The many facets of motor learning and their relevance for Parkinson’s disease. Clinical Neurophysiology, 128(7), 1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042.

    Article  PubMed  PubMed Central  Google Scholar 

  • McPherson, L. M., & Dewald, J. P. A. (2019). Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2019.01.010.

  • Mehrholz, J., Kugler, J., Storch, A., Pohl, M., Hirsch, K., & Elsner, B. (2015). Treadmill training for patients with Parkinson’s disease. Cochrane Database of Systematic Reviews, 9, CD007830.

    Google Scholar 

  • Mehrholz, J., Thomas, S., & Elsner, B. (2017a). Treadmill training and body weight support for walking after stroke. Cochrane Database of Systematic Reviews, (8), CD002840. https://doi.org/10.1002/14651858.CD002840.pub4.

  • Mehrholz, J., Thomas, S., Werner, C., Kugler, J., Pohl, M., & Elsner, B. (2017b). Electromechanical-assisted training for walking after stroke. Cochrane Database Systematic Review, (5), CD006185. https://doi.org/10.1002/14651858.CD006185.pub4 [Update in: Cochrane Database Systematic Review 2020 Oct 22;10:CD006185].

  • Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2018). Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews, (9).

    Google Scholar 

  • Miltner, W. H., Bauder, H., Sommer, M., Dettmers, C., & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: A replication. Stroke, 30(3), 586–592.

    Article  CAS  PubMed  Google Scholar 

  • Moritz, C. T., & Ambrosio, F. (2017). Regenerative rehabilitation: Combining stem cell therapies and activity-dependent stimulation. Pediatric Physical Therapy, 29(Suppl 3), S10–S15. https://doi.org/10.1097/PEP.0000000000000378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulder, T. (2007). Motor imagery and action observation: Cognitive tools for rehabilitation. Journal of Neural Transmission, 114(10), 1265–1278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müssgens, D. M., & Ullén, F. (2015). Transfer in motor sequence learning: Effects of practice schedule and sequence context. Frontiers in Human Neuroscience, 9, 642. https://doi.org/10.3389/fnhum.2015.00642.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011a). Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain, 134(Pt 12), 3647–3661. https://doi.org/10.1093/brain/awr275.

    Article  PubMed  Google Scholar 

  • Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011b). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 6972–6981. https://doi.org/10.1523/JNEUROSCI.6432-10.2011.

    Article  CAS  PubMed  Google Scholar 

  • Mutha, P. K., Stapp, L. H., Sainburg, R. L., & Haaland, K. Y. (2017). Motor adaptation deficits in ideomotor apraxia. Journal of the International Neuropsychological Society, 23(2), 139–149. https://doi.org/10.1017/S135561771600120X.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwboer, A., Rochester, L., Muncks, L., & Swinnen, S. P. (2009). Motor learning in Parkinson’s disease: Limitations and potential for rehabilitation. Parkinsonism and Related Disorders, 15(Suppl 3), S53–S58. https://doi.org/10.1016/s1353-8020(09)70781-3.

    Article  PubMed  Google Scholar 

  • Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience, 7(9), 697–709. https://doi.org/10.1038/nrn1970.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, D. A., Ameli, M., Kemper, F., Sarfeld, A. S., Bensmail, D., Konczak, J., & Fink, G. R. (2009). Arbitrary visuomotor mapping during object manipulation in Parkinson’s disease. Movement Disorders, 24(13), 1925–1933.

    Article  PubMed  Google Scholar 

  • Nowak, D. A., Bosl, K., Podubecka, J., & Carey, J. R. (2010). Noninvasive brain stimulation and motor recovery after stroke. Restorative Neurology and Neuroscience, 28(4), 531–544.

    Article  PubMed  Google Scholar 

  • Nudo, R. J. (2011). Neural bases of recovery after brain injury. Journal of Communication Disorders, 44(5), 515–520. https://doi.org/10.1016/j.jcomdis.2011.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nudo, R. J., Wise, B. M., Sifuentes, F., & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272, 1791–1794.

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson, A. L., & Johansson, B. B. (1995). Environment influences functional outcome of cerebral infarction in rats. Stroke, 26(4), 644–649.

    Article  CAS  PubMed  Google Scholar 

  • Pendt, L. K., Reuter, I., & Muller, H. (2011). Motor skill learning, retention, and control deficits in Parkinson’s disease. PLoS One, 6(7), e21669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer, K., & Rütten, A. (2017). Nationale Empfehlungen für Bewegung und Bewegungsförderung. Das Gesundheitswesen, 79(S 01), S2–S3.

    Article  PubMed  Google Scholar 

  • Pfeifer, K., & Sudeck, G. (2016). Körperliche Aktivität. In Psychologie in der medizinischen Rehabilitation (S. 215–228). Berlin: Springer.

    Chapter  Google Scholar 

  • Pfeifer, K., Sudeck, G., Geidl, W., & Tallner, A. (2013). Bewegungsförderung und Sport in der Neurologie – Kompetenzorientierung und Nachhaltigkeit. Neurologie und Rehabilitation, 19(1), 7–19.

    Google Scholar 

  • Platz, T. (2013). Evidenzbasierte Konzepte der motorischen Rehabilitation: Ergotherapie und Physiotherapie. In J. D. Rollnik (Hrsg.), Die neurologisch-neurochirurgische Frührehabilitation (S. 131–154). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Pollock, A., Baer, G., Pomeroy, V., & Langhorne, P. (2007). Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: a systematic review. Clinical Rehabilitation, 21(5), 395–410.

    Google Scholar 

  • Pollock, A., Baer, G., Campbell, P., Choo, P. L., Forster, A., Morris, J., Pomeroy, V. M., & Langhorne, P. (2014). Physical rehabilitation approaches for the recovery of function and mobility following stroke: major update. Stroke, 45(10), e202.

    Google Scholar 

  • Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J. Y., Lazar, R. M., Marshall, R. S., & Krakauer, J. W. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair, 22(1), 64–71. https://doi.org/10.1177/1545968307305302.

    Article  PubMed  Google Scholar 

  • Preeti, R. (2015). Upper limb motor impairment after stroke. Physical Medicine and Rehabilitation Clinics, 26(4), 599–610.

    Google Scholar 

  • Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair, 23(9), 879–885. https://doi.org/10.1177/1545968309338193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghavan, P., Krakauer, J. W., & Gordon, A. M. (2006). Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain, 129(Pt 6), 1415–1425. https://doi.org/10.1093/brain/awl070.

    Article  PubMed  Google Scholar 

  • Ramachandran, V. (1994). Phantom limbs, neglect syndromes, repressed memories, and Freudian psychology. International Review of Neurobiology, 37, 291–333.

    Article  CAS  PubMed  Google Scholar 

  • Rehme, A. K., Eickhoff, S. B., Wang, L. E., Fink, G. R., & Grefkes, C. (2011a). Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage, In Press, Corrected Proof. https://doi.org/10.1016/j.neuroimage.2011.01.014.

  • Rehme, A. K., Fink, G. R., von Cramon, D. Y., & Grefkes, C. (2011b). The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral Cortex, 21(4), 756–768. https://doi.org/10.1093/cercor/bhq140.

    Article  PubMed  Google Scholar 

  • Rocca, M. A., Amato, M. P., De Stefano, N., Enzinger, C., Geurts, J. J., Penner, I.-K., Rovira, A., Sumowski, J. F., Valsasina, P., & Filippi, M. (2015). Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. The Lancet Neurology, 14(3), 302–317.

    Article  PubMed  Google Scholar 

  • Rohrbach, N., Chicklis, E., & Levac, D. E. (2019). What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review. Journal of Neuroengineering and Rehabilitation, 16(1), 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, R. A., Lee, T. D., Winstein, C. J., Wulf, G., & Zelaznik, H. (2018). Motor control and learning: A behavioral emphasis (6. Aufl.). Champaign: Human Kinetics.

    Google Scholar 

  • Schwarz, A., Kanzler, C. M., Lambercy, O., Luft, A. R., & Veerbeek, J. M. (2019). Systematic review on kinematic assessments of upper limb movements after stroke. Stroke, 50(3), 718–727. https://doi.org/10.1161/strokeaha.118.023531.

    Article  PubMed  Google Scholar 

  • Silva, S., Borges, L. R., Santiago, L., Lucena, L., Lindquist, A. R., & Ribeiro, T. (2018). Motor imagery for gait rehabilitation after stroke (Protocol). Cochrane Database of Systematic Reviews (5). https://doi.org/10.1002/14651858.CD013019.

  • Smedes, F., Heidmann, M., Schäfer, C., Fischer, N., & Stępień, A. (2016). The proprioceptive neuromuscular facilitation-concept; the state of the evidence, a narrative review. Physical Therapy Reviews, 21(1), 17–31. https://doi.org/10.1080/10833196.2016.1216764.

    Article  Google Scholar 

  • Sommerfeld, D. K., Eek, E. U.-B., Svensson, A.-K., Holmqvist, L. W., & von Arbin, M. H. (2004). Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke, 35(1), 134–139.

    Article  PubMed  Google Scholar 

  • Stephan, K. M., & Lotze, M. (2017). Plastizität als Grundlage für die Erholung nach Schlaganfall. Neurological Rehabilitation, 23(3), 199–208.

    Google Scholar 

  • Stephan, M. A., Meier, B., Weber Zaugg, S., & Kaelin-Lang, A. (2011). Motor sequence learning performance in Parkinson’s disease patients depends on the stage of disease. Brain and Cognition, 75(2), 135–140. https://doi.org/10.1016/j.bandc.2010.10.015.

    Article  PubMed  Google Scholar 

  • Stinear, C. M., Barber, P. A., Petoe, M., Anwar, S., & Byblow, W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 135(Pt 8), 2527–2535. https://doi.org/10.1093/brain/aws146.

    Article  PubMed  Google Scholar 

  • Taub, E., Miller, N., Novack, T., Fleming, W. C., Nepomuceno, C., Connell, J., & Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74(4), 347–354.

    CAS  PubMed  Google Scholar 

  • Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., & Dohle, C. (2013). Mirror therapy for improving motor function after stroke. Stroke, 44(1), e1–e2.

    Article  PubMed  Google Scholar 

  • Timmann, D., Shimansky, Y., Larson, P. S., Wunderlich, D. A., Stelmach, G. E., & Bloedel, J. R. (1996). Visuomotor learning in cerebellar patients. Behavioural Brain Research, 81(1–2), 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Trompetto, C., Marinelli, L., Mori, L., Pelosin, E., Currà, A., Molfetta, L., & Abbruzzese, G. (2014). Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Research International, 2014, 354906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan-Graham, J., Cott, C., & Wright, F. V. (2015). The Bobath (NDT) concept in adult neurological rehabilitation: What is the state of the knowledge? A scoping review. Part II: Intervention studies perspectives. Disability and Rehabilitation, 37(21), 1909–1928. https://doi.org/10.3109/09638288.2014.987880.

    Article  PubMed  Google Scholar 

  • Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One, 9(2), e87987. https://doi.org/10.1371/journal.pone.0087987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vojta. (2018). Internationale Vojta Gesellschaft e.V. https://www.vojta.com/de/. Zugegriffen am 11.05.2018.

  • Vojta, V., & Peters, A. (2007). Das vojta-prinzip: muskelspiele in reflexfortbewegung und motorischer ontogenese. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Wilson, P. N., Foreman, N., & Stanton, D. (1997). Virtual reality, disability and rehabilitation. Disability and Rehabilitation, 19(6), 213–220. https://doi.org/10.3109/09638289709166530.

    Article  CAS  PubMed  Google Scholar 

  • Winstein, C. J., Merians, A. S., & Sullivan, K. J. (1999). Motor learning after unilateral brain damage. Neuropsychologia, 37(8), 975–987.

    Article  CAS  PubMed  Google Scholar 

  • Winters, C., van Wegen, E. E. H., Daffertshofer, A., & Kwakkel, G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabilitation and Neural Repair, 29(7), 614–622. https://doi.org/10.1177/1545968314562115.

    Article  PubMed  Google Scholar 

  • Wulf, D., & Scheidtmann, K. (2010). Motorische Symptome bei neurologischen Erkrankungen. In A. u. D. Hüter-Becker, M. (Hrsg.), Physiotherapie in der Neurologie: physiolehrbuch Praxis (S. 168–224). Stuttgart: Georg Thieme.

    Google Scholar 

  • Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528. https://doi.org/10.1038/nn.3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler, S. R., & Krakauer, J. W. (2013). The interaction between training and plasticity in the poststroke brain. Current Opinion in Neurology, 26(6), 609–616. https://doi.org/10.1097/WCO.0000000000000025.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Rohrbach .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rohrbach, N., Hermsdörfer, J. (2021). Motorische Neurorehabilitation. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53386-4_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53386-4_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53386-4

  • Online ISBN: 978-3-662-53386-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics