Advertisement

(Evidenzbasierte) Trainingsprinzipien

  • Lars DonathEmail author
  • Oliver Faude
Living reference work entry

Zusammenfassung

Trainingsprinzipien gelten als Handlungsorientierungen für die Gestaltung des Trainingsprozesses. In den letzten Jahrzehnten haben sich eine Vielzahl dieser Prinzipien etabliert. Je nach Bezugssystem und Sprachraum existieren in der Literatur bis zu 20 dieser Prinzipien. Deren wissenschaftliche Evidenz und die Bedeutung für den Trainingsprozess ist nicht immer klar belegt. Einige dieser Prinzipien sind zudem unscharf von anderen abgrenzbar. Eine integrative und evidenzbasierte Berücksichtigung relevanter Prinzipien sollte im Planungs-, Umsetzungs- und Auswertungsprozess des Trainings unter effizientem Mittel- und Methodeneinsatz im Sinne eines optimalen Anpassungsprozesses gefördert werden. Diese intendierten Anpassungsreaktionen sind reizspezifisch, individuell und müssen unter Berücksichtigung des progressiven Overloads sowie der Belastungsnormativa (Frequenz, Intensität, Typ und Zeit) sorgfältig geplant und überwacht werden.

Dieser Beitrag ist Teil der Sektion sportmotorische Fähigkeiten und sportliches Training, herausgegeben vom Teilherausgeber Michael Fröhlich, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

Schlüsselwörter

Training Sport Leistung Athleten Leistungsaufbau Progression 

Literatur

  1. American College of Sports, M (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687–708.  https://doi.org/10.1249/MSS.0b013e3181915670.CrossRefGoogle Scholar
  2. Ammann, B. C., Knols, R. H., Baschung, P., de Bie, R. A., & de Bruin, E. D. (2014). Application of principles of exercise training in sub-acute and chronic stroke survivors: A systematic review. BMC Neurology, 14, 167.  https://doi.org/10.1186/s12883-014-0167-2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balyi, I. (1995). Planning, periodization, integration and implementation of annual training programs. (S. 40–66) Gold Coast.: Australian Strength and Conditioning Association (ASCA)Google Scholar
  4. Banister, E. W., & Calvert, T. W. (1980). Planning for future performance: Implications for long term training. Canadian Journal of Applied Sport Sciences, 5(3), 170–176.Google Scholar
  5. Bartlett, J. D., O’Connor, F., Pitchford, N., Torres-Ronda, L., & Robertson, S. J. (2017). Relationships between internal and external training load in team-sport athletes: Evidence for an individualized approach. International Journal of Sports Physiology and Performance, 12(2), 230–234.  https://doi.org/10.1123/ijspp.2015-0791.CrossRefPubMedGoogle Scholar
  6. Behm, D. G., Young, J. D., Whitten, J. H. D., Reid, J. C., Quigley, P. J., Low, J., ... Granacher, U. (2017). Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front Physiol, 8, 423.  https://doi.org/10.3389/fphys.2017.00423.
  7. Billat, V. L., Demarle, A., Slawinski, J., Paiva, M., & Koralsztein, J. P. (2001). Physical and training characteristics of top-class marathon runners. Medicine and Science in Sports and Exercise, 33(12), 2089–2097.CrossRefPubMedGoogle Scholar
  8. Billat, V., Lepretre, P. M., Heugas, A. M., Laurence, M. H., Salim, D., & Koralsztein, J. P. (2003). Training and bioenergetic characteristics in elite male and female Kenyan runners. Medicine and Science in Sports and Exercise, 35(2), 297–304; discussion 305–296.  https://doi.org/10.1249/01.MSS.0000053556.59992.A9.CrossRefPubMedGoogle Scholar
  9. Bompa, T. O. (1999). Periodization – Therorie and methodology of training (Bd. 4). Champaign: Human Kinetics.Google Scholar
  10. Bouchard, C. (2012). Genomic predictors of trainability. Experimental Physiology, 97(3), 347–352.  https://doi.org/10.1113/expphysiol.2011.058735.CrossRefPubMedGoogle Scholar
  11. Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., ... Rao, D. C. (1999). Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE family study. Journal of Applied Physiology (Bethesda, MD: 1985), 87(3), 1003–1008.CrossRefPubMedGoogle Scholar
  12. Buchheit, M. (2011). The two-hour marathon: Through a highly individualized training process? Journal of Applied Physiology (Bethesda, MD: 1985), 110(1), 282–283; discussion 294.Google Scholar
  13. Campbell, K. L., Neil, S. E., & Winters-Stone, K. M. (2012). Review of exercise studies in breast cancer survivors: Attention to principles of exercise training. British Journal of Sports Medicine, 46(13), 909–916.  https://doi.org/10.1136/bjsm.2010.082719. https://doi.org/10.113e6/jsports-2010-082719.CrossRefPubMedGoogle Scholar
  14. Coakley, S. L., & Passfield, L. (2017). Individualised training at different intensities, in untrained participants, results in similar physiological and performance benefits. Journal of Sports Sciences, 1–8.  https://doi.org/10.1080/02640414.2017.1346269.CrossRefPubMedGoogle Scholar
  15. Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: Do opposites distract? The Journal of Physiology, 595(9), 2883–2896.  https://doi.org/10.1113/JP272270.CrossRefPubMedGoogle Scholar
  16. Coyle, E. F., Martin, W. H., 3rd, Sinacore, D. R., Joyner, M. J., Hagberg, J. M., & Holloszy, J. O. (1984). Time course of loss of adaptations after stopping prolonged intense endurance training. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 57(6), 1857–1864.CrossRefGoogle Scholar
  17. Coyle, E. F., Martin, W. H., 3rd, Bloomfield, S. A., Lowry, O. H., & Holloszy, J. O. (1985). Effects of detraining on responses to submaximal exercise. Journal of Applied Physiology, 59(3), 853–859.CrossRefPubMedGoogle Scholar
  18. Dick, F. W. (2002). Sports training principles (Bd. 4). London: A & C Black.Google Scholar
  19. Doma, K., Deakin, G. B., & Bentley, D. J. (2017). Implications of impaired endurance performance following single bouts of resistance training: An alternate concurrent training perspective. Sports Medicine.  https://doi.org/10.1007/s40279-017-0758-3.CrossRefPubMedGoogle Scholar
  20. Donath, L., Boettger, S., Puta, C., Wetzig, F., Mueller, H. J., Bar, K. J., & Gabriel, H. H. (2010). Dissociation of performance parameters at the IAT requires specific exercise recommendations for depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(1), 131–135.  https://doi.org/10.1016/j.pnpbp.2009.10.012.CrossRefGoogle Scholar
  21. Donath, L., Roesner, K., Schoffl, V., & Gabriel, H. H. (2013a). Work-relief ratios and imbalances of load application in sport climbing: Another link to overuse-induced injuries? Scandinavian Journal of Medicine & Science in Sports, 23(4), 406–414.  https://doi.org/10.1111/j.1600-0838.2011.01399.x.CrossRefGoogle Scholar
  22. Donath, L., Roth, R., Rueegge, A., Groppa, M., Zahner, L., & Faude, O. (2013b). Effects of slackline training on balance, jump performance & muscle activity in young children. International Journal of Sports Medicine, 34(12), 1093–1098.  https://doi.org/10.1055/s-0033-1337949.CrossRefPubMedGoogle Scholar
  23. Donath, L., Roth, R., Zahner, L., & Faude, O. (2016). Slackline training (balancing over narrow nylon ribbons) and balance performance: A meta-analytical review. Sports Medicine, 47, 1075–1086.Google Scholar
  24. Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring training loads: The past, the present, and the future. International Journal of Sports Physiology and Performance, 12(Suppl 2), S22–S28.  https://doi.org/10.1123/ijspp.2016-0388.CrossRefPubMedGoogle Scholar
  25. Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762.  https://doi.org/10.1007/s40279-014-0162-1.CrossRefPubMedGoogle Scholar
  26. Giboin, L. S., Gruber, M., & Kramer, A. (2015). Task-specificity of balance training. Human Movement Science, 44, 22–31.  https://doi.org/10.1016/j.humov.2015.08.012.CrossRefPubMedGoogle Scholar
  27. Granacher, U., Iten, N., Roth, R., & Gollhofer, A. (2010). Slackline training for balance and strength promotion. International Journal of Sports Medicine, 31(10), 717–723.  https://doi.org/10.1055/s-0030-1261936.CrossRefPubMedGoogle Scholar
  28. Gruber, M., Taube, W., Gollhofer, A., Beck, S., Amtage, F., & Schubert, M. (2007). Training-specific adaptations of H- and stretch reflexes in human soleus muscle. Journal of Motor Behavior, 39(1), 68–78.  https://doi.org/10.3200/JMBR.39.1.68-78.CrossRefPubMedGoogle Scholar
  29. Hammami, R., Chaouachi, A., Makhlouf, I., Granacher, U., & Behm, D. G. (2016). Associations between balance and muscle strength, power performance in male youth athletes of different maturity status. Pediatric Exercise Science, 28(4), 521–534.  https://doi.org/10.1123/pes.2015-0231.CrossRefPubMedGoogle Scholar
  30. Hawley, J. A. (2009). Molecular responses to strength and endurance training: Are they incompatible? Applied Physiology, Nutrition, and Metabolism, 34(3), 355–361.  https://doi.org/10.1139/H09-023.CrossRefPubMedGoogle Scholar
  31. Hecksteden, A., Grutters, T., & Meyer, T. (2013). Association between postexercise hypotension and long-term training-induced blood pressure reduction: A pilot study. Clinical Journal of Sport Medicine, 23(1), 58–63.  https://doi.org/10.1097/JSM.0b013e31825b6974.CrossRefPubMedGoogle Scholar
  32. Hecksteden, A., Kraushaar, J., Scharhag-Rosenberger, F., Theisen, D., Senn, S., & Meyer, T. (2015). Individual response to exercise training – A statistical perspective. Journal of Applied Physiology (Bethesda, MD: 1985), 118(12), 1450–1459.  https://doi.org/10.1152/japplphysiol.00714.2014.CrossRefGoogle Scholar
  33. Hecksteden, A., Pitsch, W., Julian, R., Pfeiffer, M., Kellmann, M., Ferrauti, A., & Meyer, T. (2016). A new method to individualize monitoring of muscle recovery in athletes. International Journal of Sports Physiology and Performance, 1–25.  https://doi.org/10.1123/ijspp.2016-0120.CrossRefPubMedGoogle Scholar
  34. Hitzschke, B., Kölling, S., Ferrauti, A., Meyer, T., Pfeiffer, M., & Kellmann, M. (2016). Entwicklung der Kurzskala zur Erfassung von Erholung und Beanspruchung im Sport (KEB). Zeitschrift für Sportpsychologie, 22, 146–162.Google Scholar
  35. Hopkins, W. G. (2015). Individual responses made easy. Journal of Applied Physiology (Bethesda, MD: 1985), 118(12), 1444–1446.  https://doi.org/10.1152/japplphysiol.00098.2015.CrossRefGoogle Scholar
  36. Hottenrott, K., & Hoos, O. (2013). Sportmotorische Fähigkeiten und sportliche Leistungen – Trainingswissenschaft. In A. Güllich & M. Krüger (Hrsg.), Sport (Bd. 1). Heidelberg: Springer.Google Scholar
  37. Hrysomallis, C. (2007). Relationship between balance ability, training and sports injury risk. Sports Medicine, 37(6), 547–556.CrossRefPubMedGoogle Scholar
  38. Impellizzeri, F. M., Marcora, S. M., Castagna, C., Reilly, T., Sassi, A., Iaia, F. M., & Rampinini, E. (2006). Physiological and performance effects of generic versus specific aerobic training in soccer players. International Journal of Sports Medicine, 27(6), 483–492.  https://doi.org/10.1055/s-2005-865839.CrossRefPubMedGoogle Scholar
  39. Issurin, V. (2008). Block periodization versus traditional training theory: A review. The Journal of Sports Medicine and Physical Fitness, 48(1), 65–75.PubMedGoogle Scholar
  40. Issurin, V. B. (2016). Benefits and limitations of block periodized training approaches to athletes‘ preparation: A review. Sports Medicine, 46(3), 329–338.  https://doi.org/10.1007/s40279-015-0425-5.CrossRefPubMedGoogle Scholar
  41. Keller, M., Pfusterschmied, J., Buchecker, M., Muller, E., & Taube, W. (2012). Improved postural control after slackline training is accompanied by reduced H-reflexes. Scandinavian Journal of Medicine & Science in Sports, 22(4), 471–477.  https://doi.org/10.1111/j.1600-0838.2010.01268.x.CrossRefGoogle Scholar
  42. Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2015). Phyiology of sport and exercise (Bd. 6). Champaign: Human Kinetics.Google Scholar
  43. Kiely, J. (2012). Periodization paradigms in the 21st century: Evidence-led or tradition-driven? International Journal of Sports Physiology and Performance, 7(3), 242–250.CrossRefPubMedGoogle Scholar
  44. Kiviniemi, A. M., Hautala, A. J., Kinnunen, H., & Tulppo, M. P. (2007). Endurance training guided individually by daily heart rate variability measurements. European Journal of Applied Physiology, 101(6), 743–751.  https://doi.org/10.1007/s00421-007-0552-2.CrossRefPubMedGoogle Scholar
  45. Kummel, J., Kramer, A., Giboin, L. S., & Gruber, M. (2016). Specificity of balance training in healthy individuals: A systematic review and meta-analysis. Sports Medicine.  https://doi.org/10.1007/s40279-016-0515-z.CrossRefPubMedGoogle Scholar
  46. Lambert, M. I., & Borresen, J. (2010). Measuring training load in sports. International Journal of Sports Physiology and Performance, 5(3), 406–411.CrossRefPubMedGoogle Scholar
  47. Le Meur, Y., & Mujika, I. (2016). Endurance training (1. Aufl.). Donostia: Inigo Muijika S.L.U.Google Scholar
  48. Lesinski, M., Prieske, O., & Granacher, U. (2016). Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. British Journal of Sports Medicine.  https://doi.org/10.1136/bjsports-2015-095497.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mann, T. N., Lamberts, R. P., & Lambert, M. I. (2014). High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Medicine, 44(8), 1113–1124.  https://doi.org/10.1007/s40279-014-0197-3.CrossRefPubMedGoogle Scholar
  50. Mann, T. N., Lamberts, R. P., Nummela, A., & Lambert, M. I. (2017). Relationship between perceived exertion during exercise and subsequent recovery measurements. Biology of Sport, 34(1), 3–9.  https://doi.org/10.5114/biolsport.2017.63363.CrossRefPubMedGoogle Scholar
  51. Marcora, S. M., & Staiano, W. (2010). The limit to exercise tolerance in humans: Mind over muscle? European Journal of Applied Physiology, 109(4), 763–770.  https://doi.org/10.1007/s00421-010-1418-6.CrossRefPubMedGoogle Scholar
  52. Martin, W. H., 3rd, Coyle, E. F., Bloomfield, S. A., & Ehsani, A. A. (1986). Effects of physical deconditioning after intense endurance training on left ventricular dimensions and stroke volume. Journal of the American College of Cardiology, 7(5), 982–989.CrossRefPubMedGoogle Scholar
  53. Matveyev, L. (1964). Problem of periodization the sport training. Moscow: Fizkultura i Sport Publisher.Google Scholar
  54. Meyer, T., Gabriel, H. H., & Kindermann, W. (1999). Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Medicine and Science in Sports and Exercise, 31(9), 1342–1345.CrossRefPubMedGoogle Scholar
  55. Minshull, C., & Gleeson, N. (2017). Considerations of the principles of resistance training in exercise studies for the management of knee osteoarthritis: A systematic review. Archives of Physical Medicine and Rehabilitation.  https://doi.org/10.1016/j.apmr.2017.02.026.CrossRefPubMedGoogle Scholar
  56. Montero, D., & Lundby, C. (2017). Refuting the myth of non-response to exercise training: ‚Non-responders‘ do respond to higher dose of training. The Journal of Physiology, 595(11), 3377–3387.  https://doi.org/10.1113/JP273480.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Morrissey, M. C., Harman, E. A., & Johnson, M. J. (1995). Resistance training modes: Specificity and effectiveness. Medicine and Science in Sports and Exercise, 27(5), 648–660.CrossRefPubMedGoogle Scholar
  58. Muehlbauer, T., Roth, R., Bopp, M., & Granacher, U. (2012). An exercise sequence for progression in balance training. Journal of Strength and Conditioning Research, 26(2), 568–574.  https://doi.org/10.1519/JSC.0b013e318225f3c4.CrossRefPubMedGoogle Scholar
  59. Mujika, I. (Hrsg.). (2012). Endurance training: science and practice.Google Scholar
  60. Mujika, I., & Padilla, S. (2001). Muscular characteristics of detraining in humans. Medicine and Science in Sports and Exercise, 33(8), 1297–1303.CrossRefPubMedGoogle Scholar
  61. Norris, S. R., & Smith, D. J. (2002). Planning, periodization, and sequencing of training and competition: The rationale for a competently planned, optimally executed training and competition program, supported by a multidisciplinary team. In M. Kellmann (Hrsg.), Enhancing recovery: Preventing underperformance in athletes. Champaign: Human Kinetics.Google Scholar
  62. Palao, J. M., López-Martínez, A. B., Valadés, D., & Ortega, E. (2015). Physical actions and work-rest time in women’s beach volleyball. International Journal of Performance Analysis in Sport, 15(1), 424–429.  https://doi.org/10.1080/24748668.2015.11868803.CrossRefGoogle Scholar
  63. Price, M., & Halabi, K. (2005). The effects of work-rest duration on intermittent exercise and subsequent performance. Journal of Sports Sciences, 23(8), 835–842.  https://doi.org/10.1080/02640410400021971.CrossRefPubMedGoogle Scholar
  64. Price, M., & Moss, P. (2007). The effects of work:Rest duration on physiological and perceptual responses during intermittent exercise and performance. Journal of Sports Sciences, 25(14), 1613–1621.  https://doi.org/10.1080/02640410701287248.CrossRefPubMedGoogle Scholar
  65. Psilander, N., Frank, P., Flockhart, M., & Sahlin, K. (2015). Adding strength to endurance training does not enhance aerobic capacity in cyclists. Scandinavian Journal of Medicine & Science in Sports, 25(4), e353–e359.  https://doi.org/10.1111/sms.12338.CrossRefGoogle Scholar
  66. Reid, M., Duffield, R., Dawson, B., Baker, J., & Crespo, M. (2008). Quantification of the physiological and performance characteristics of on-court tennis drills. British Journal of Sports Medicine, 42(2), 146–151; discussion 151.  https://doi.org/10.1136/bjsm.2007.036426.CrossRefPubMedGoogle Scholar
  67. Reilly, T., Morris, T., & Whyte, G. (2009). The specificity of training prescription and physiological assessment: A review. Journal of Sports Sciences, 27(6), 575–589.  https://doi.org/10.1080/02640410902729741.CrossRefPubMedGoogle Scholar
  68. Robineau, J., Babault, N., Piscione, J., Lacome, M., & Bigard, A. X. (2016). Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. Journal of Strength and Conditioning Research, 30(3), 672–683.  https://doi.org/10.1519/JSC.0000000000000798.CrossRefPubMedGoogle Scholar
  69. Roux, W. (1895). Gesammelte Abhandlungen über die Entwicklungsmechanik der Organismen. Leipzig: Engelmann.CrossRefGoogle Scholar
  70. Rushall, B. S. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology, 2(1), 51–66.  https://doi.org/10.1080/10413209008406420.CrossRefGoogle Scholar
  71. Scharhag-Rosenberger, F., Meyer, T., Walitzek, S., & Kindermann, W. (2009). Time course of changes in endurance capacity: A 1-yr training study. Medicine and Science in Sports and Exercise, 41(5), 1130–1137.  https://doi.org/10.1249/MSS.0b013e3181935a11.CrossRefPubMedGoogle Scholar
  72. Scharhag-Rosenberger, F., Meyer, T., Gassler, N., Faude, O., & Kindermann, W. (2010). Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport, 13(1), 74–79.  https://doi.org/10.1016/j.jsams.2008.12.626.CrossRefPubMedGoogle Scholar
  73. Scharhag-Rosenberger, F., Walitzek, S., Kindermann, W., & Meyer, T. (2012). Differences in adaptations to 1 year of aerobic endurance training: Individual patterns of nonresponse. Scandinavian Journal of Medicine & Science in Sports, 22(1), 113–118.  https://doi.org/10.1111/j.1600-0838.2010.01139.x.CrossRefGoogle Scholar
  74. Schnabel, G., Harre, H., & Krug, J. (2008). Trainingslehre, Trainingswissenschaft. Achen: Meyer & Meyer.Google Scholar
  75. Schumann, M., Mykkanen, O. P., Doma, K., Mazzolari, R., Nyman, K., & Hakkinen, K. (2015). Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Applied Physiology, Nutrition, and Metabolism, 40(1), 28–36.  https://doi.org/10.1139/apnm-2014-0262.CrossRefPubMedGoogle Scholar
  76. Schumann, M., Botella, J., Karavirta, L., & Hakkinen, K. (2017). Training-load-guided vs standardized endurance training in recreational runners. International Journal of Sports Physiology and Performance, 12(3), 295–303.  https://doi.org/10.1123/ijspp.2016-0093.CrossRefPubMedGoogle Scholar
  77. Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5(3), 276–291.CrossRefPubMedGoogle Scholar
  78. Sherrington, C., Michaleff, Z. A., Fairhall, N., Paul, S. S., Tiedemann, A., Whitney, J., ... Lord, S. R. (2016). Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. British Journal of Sports Medicine.  https://doi.org/10.1136/bjsports-2016-096547.CrossRefPubMedGoogle Scholar
  79. Siff, M. C., & Verkhoshansky, Y. V. (1999). Supertraining (4. Aufl.). Denver: Supertraining internatinoal.Google Scholar
  80. Smith, D. J. (2003). A framework for understanding the training process leading to elite performance. Sports Medicine, 33(15), 1103–1126.CrossRefPubMedGoogle Scholar
  81. Stoggl, T., & Sperlich, B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology, 5, 33.  https://doi.org/10.3389/fphys.2014.00033.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sylta, O., Tonnessen, E., Hammarstrom, D., Danielsen, J., Skovereng, K., Ravn, T., ... Seiler, S. (2016). The effect of different high-intensity periodization models on endurance adaptations. Medicine and Science in Sports and Exercise, 48(11), 2165–2174.  https://doi.org/10.1249/MSS.0000000000001007CrossRefGoogle Scholar
  83. Taylor, K. L., Hopkins, W. G., Chapman, D. W., & Cronin, J. B. (2016). The influence of training phase on error of measurement in jump performance. International Journal of Sports Physiology and Performance, 11(2), 235–239.  https://doi.org/10.1123/ijspp.2015-0115.CrossRefPubMedGoogle Scholar
  84. Tonnessen, E., Sylta, O., Haugen, T. A., Hem, E., Svendsen, I. S., & Seiler, S. (2014). The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One, 9(7), e101796.  https://doi.org/10.1371/journal.pone.0101796.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Toraman, N. F. (2005). Short term and long term detraining: Is there any difference between young-old and old people? British Journal of Sports Medicine, 39(8), 561–564.  https://doi.org/10.1136/bjsm.2004.015420.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Toraman, N. F., & Ayceman, N. (2005). Effects of six weeks of detraining on retention of functional fitness of old people after nine weeks of multicomponent training. British Journal of Sports Medicine, 39(8), 565–568; discussion 568.  https://doi.org/10.1136/bjsm.2004.015586.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Viru, A. (1995). Adaption in sports training. Boca Raton: CRC Press.Google Scholar
  88. Vollaard, N. B., Constantin-Teodosiu, D., Fredriksson, K., Rooyackers, O., Jansson, E., Greenhaff, P. L., ... Sundberg, C. J. (2009). Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. Journal of Applied Physiology (1985), 106(5), 1479–1486.  https://doi.org/10.1152/japplphysiol.91453.2008.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Trainingswissenschaft und SportinformatikDeutsche Sporthochschule KölnKölnDeutschland
  2. 2.Departement für Sport, Bewegung und GesundheitUniversität BaselBaselSchweiz

Section editors and affiliations

  • Michael Fröhlich
    • 1
  1. 1.Fachgebiet SportwissenschaftTU KaiserslauternKaiserslauternDeutschland

Personalised recommendations