Advertisement

Sportmedizinische Anwendung: Laktat- und Leistungsdiagnostik

  • Kai RöckerEmail author
Living reference work entry

Zusammenfassung

Die metabolische Leistungsdiagnostik dient der objektiven Bestimmung der Ausdauerleistungsfähigkeit von Sporttreibenden oder der kardiopulmonalen Funktion von Patienten. Die Messung der Blutlaktatkonzentration bei körperlicher Belastung ist dabei eines der wichtigsten Verfahren der sportmedizinisch-internistischen Diagnostik. Die korrekte Anwendung setzt eine detaillierte Kenntnis der Belastungsphysiologie und Erfahrung im methodischen Einsatz voraus. Das Kapitel beschreibt Indikationen, Nebenbedingungen und Hintergründe zur Interpretation und Methodik.

Dieser Beitrag ist Teil der Sektion Sportmedizin, herausgegeben vom Teilherausgeber Holger HW Gabriel, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

Schlüsselwörter

Belastungsdiagnostik Fitnesstest Trainingssteuerung Ausdauer Mehrstufentest Energiebereitstellung Ergometrie Laktatmessung 

Literatur

  1. Alvarez-Ramirez, J. J. (2002). An improved Peronnet-Thibault mathematical model of human running performance. European Journal of Applied Physiology, 86, 517–525.  https://doi.org/10.1007/s00421-001-0555-3.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amann, M., Subudhi, A. W., Walker, J., Eisenman, P., Shultz, B., & Foster, C. (2004). An evaluation of the predictive validity and reliability of ventilatory threshold. Medicine and Science in Sports and Exercise, 36, 1716–1722.  https://doi.org/10.1249/01.MSS.0000142305.18543.34.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Astles, R., Williams, C. P., & Sedor, F. (1994). Stability of plasma lactate in vitro in the presence of antiglycolytic agents. Clinical Chemistry, 40, 1327–1330.PubMedPubMedCentralGoogle Scholar
  4. Baker, S. K., McCullagh, K. J. A., & Bonen, A. (1998). Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. Journal of Applied Physiology, 84, 987–994.  https://doi.org/10.1152/japplphysiol.00534.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barr, D. P., & Himwich, H. E. (1923). Studies in the physiology of muscular exercise: development and duration of changes in acid-base equilibrium. The Journal of Biological Chemistry, 55(3), 539–555.Google Scholar
  6. Bassett, D. R. (2002). Scientific contributions of A. V. Hill: Exercise physiology pioneer. Journal of Applied Physiology, 93, 1567–1582.  https://doi.org/10.1152/japplphysiol.01246.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beneke, R. (2003). Maximal lactate steady state concentration (MLSS): Experimental and modelling approaches. European Journal of Applied Physiology, 88, 361–369.  https://doi.org/10.1007/s00421-002-0713-2.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beneke, R., & Leithäuser, R. M. (2017). Maximal lactate steady state’s dependence on cycling cadence. International Journal of Sports Physiology and Performance, 12, 304–309.  https://doi.org/10.1123/ijspp.2015-0573.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beneke, R., Hütler, M., & Leithäuser, R. M. (2000). Maximal lactate-steady-state independent of performance. Medicine and Science in Sports and Exercise, 32, 1135–1139.  https://doi.org/10.1097/00005768-200006000-00016.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beneke, R., Leithäuser, R. M., & Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 6, 8–24.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bernstein, R. E. (1959). Alterations in metabolic energetics and cation transport during aging of red cells. The Journal of Clinical Investigation, 38, 1572–1586.  https://doi.org/10.1172/JCI103936.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Biedler, A., Risch, A., & Mertzlufft, F. (1998). Bestimmung der Laktatkonzentration in Blut und Plasma mit Biosensoren Ein Methodenvergleich. Der Anaesthesist, 47, 968–974.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bishop, P. A., Smith, J. F., Kime, J. C., Mayo, J. M., & Tin, Y. H. (1992). Comparison of a manual and an automated enzymatic technique for determining blood lactate concentrations. International Journal of Sports Medicine, 13, 36–39.  https://doi.org/10.1055/s-2007-1021231.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine and Science in Sports and Exercise, 30, 1270–1275.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blair, S. N. (2003). Revisiting fitness and fatness as predictors of mortality. Clinical Journal of Sport Medicine, 13, 319–320.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Blomstrand, E., & Saltin, B. (1999). Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. Journal of Physiology (London), 514(Pt 1), 293–302.  https://doi.org/10.1016/0009-8981(80)90074-1.CrossRefGoogle Scholar
  17. Böning, D., Strobel, G., Beneke, R., & Maassen, N. (2005). Lactic acid still remains the real cause of exercise-induced metabolic acidosis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R902–R903; author reply R904–R910.  https://doi.org/10.1152/ajpregu.00069.2005.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Böning, D., Klarholz, C., Himmelsbach, B., Hütler, M., & Maassen, N. (2006). Causes of differences in exercise-induced changes of base excess and blood lactate. European Journal of Applied Physiology, 99, 163–171.  https://doi.org/10.1007/s00421-006-0328-0.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Böning, D., Maassen, N., & Steinach, M. (2017). Der Wirkungsgrad von Muskelarbeit [The efficiency of muscular exercise]. Deutsche Zeitschrift fur Sportmedizin, 68, 203–214.  https://doi.org/10.5960/dzsm.2017.295.CrossRefGoogle Scholar
  20. Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56, 679–685.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brooks, G. A. (2007). Lactate: Link between glycolytic and oxidative metabolism. Sports Medicine, 37, 341–343.  https://doi.org/10.2165/00007256-200737040-00017.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Brooks, G. A. (2009). Cell-cell and intracellular lactate shuttles. Journal of Physiology (London), 587, 5591–5600.  https://doi.org/10.1113/jphysiol.2009.178350.CrossRefGoogle Scholar
  23. Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27, 757–785.  https://doi.org/10.1016/j.cmet.2018.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Buono, M. J., & Yeager, J. E. (1986). Intraerythrocyte and plasma lactate concentrations during exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 55, 326–329.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carter, J. J., & Jeukendrup, A. E. A. (2002). Validity and reliability of three commercially available breath-by-breath respiratory systems. European Journal of Applied Physiology, 86, 435–441.  https://doi.org/10.1007/s00421-001-0572-2.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13, 518–522.  https://doi.org/10.1055/s-2007-1021309.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cori, C. F. (1981). The glucose-lactic acid cycle and gluconeogenesis. Current Topics in Cellular Regulation, 18, 377–387.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Coyle, E. F., Martin, W. H., Ehsani, A. A., Hagberg, J. M., Bloomfield, S. A., Sinacore, D. R., & Holloszy, J. O. (1983). Blood lactate threshold in some well-trained ischemic heart disease patients. Journal of Applied Physiology, 54, 18–23.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dehnert, C., & Bärtsch, P. (2005). Standards der Sportmedizin: Myopathien. Deutsche Zeitschrift fur Sportmedizin, 6, 179–180.Google Scholar
  30. Deng, M. C., Smits, J. M. A., & Packer, M. (2002). Selecting patients for heart transplantation: Which patients are too well for transplant? Current Opinion in Cardiology, 17, 137–144.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Derbyshire, P. J., Barr, H., Davis, F., & Higson, S. P. J. (2012). Lactate in human sweat: A critical review of research to the present day. The Journal of Physiological Sciences, 62, 429–440.  https://doi.org/10.1007/s12576-012-0213-z.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Donovan, C. M., & Brooks, G. A. (1983). Endurance training affects lactate clearance, not lactate production. The American Journal of Physiology, 244, E83–E92.PubMedPubMedCentralGoogle Scholar
  33. Douglas, C. G. (1927). Oliver-Sharpey lectures on the coördination of the respiration and circulation with variations in bodily activity. The Lancet, 210, 213–218.  https://doi.org/10.1016/S0140-6736(01)30762-6.CrossRefGoogle Scholar
  34. Dubouchaud, H., Butterfield, G. E., Wolfel, E. E., Bergman, B. C., & Brooks, G. A. (2000). Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 278, E571–E579.  https://doi.org/10.1056/NEJMoa1407778.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Faude, O., & Meyer, T. (2008). Methodische Aspekte der Laktatbestimmung. Deutsche Zeitschrift fur Sportmedizin, 59, 305–308.Google Scholar
  36. Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39, 469–490.  https://doi.org/10.2165/00007256-200939060-00003.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Faude, O., Hecksteden, A., Hammes, D., Schumacher, F., Besenius, E., Sperlich, B., & Meyer, T. (2017). Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Applied Physiology, Nutrition, and Metabolism, 42, 142–147.  https://doi.org/10.1139/apnm-2016-0375.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Feliu, J., Ventura, J. L., Segura, R., Rodas, G., Riera, J., Estruch, A., Zamora, A., & Capdevila, L. (1999). Differences between lactate concentration of samples from ear lobe and the finger tip. Journal of Physiology and Biochemistry, 55, 333–339.PubMedPubMedCentralGoogle Scholar
  39. Ferretti, G. (2014). Maximal oxygen consumption in healthy humans: Theories and facts. European Journal of Applied Physiology, 114, 2007–2036.  https://doi.org/10.1007/s00421-014-2911-0.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring training loads: The past, the present, and the future. International Journal of Sports Physiology and Performance, 12, S2–2–S2–8.  https://doi.org/10.1123/IJSPP.2016-0388.CrossRefGoogle Scholar
  41. Foxdal, P., Sjödin, B., Rudstam, H., Ostman, C., Ostman, B., & Hedenstierna, G. C. (1990). Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 61, 218–222.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Freund, H., & Gendry, P. (1978). Lactate kinetics after short strenuous exercise in man. European Journal of Applied Physiology and Occupational Physiology, 39, 123–135.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gladden, B. L. (2004). Lactate metabolism: A new paradigm for the third millennium. Journal of Physiology (London), 558, 5–30.  https://doi.org/10.1113/jphysiol.2003.058701.CrossRefGoogle Scholar
  44. Gladden, L. B., Yates, J. W., Stremel, R. W., & Stamford, B. A. (1985). Gas exchange and lactate anaerobic thresholds: Inter- and intraevaluator agreement. Journal of Applied Physiology, 58, 2082–2089.  https://doi.org/10.1152/japplphysiol.00534.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hammarén, E., Rafsten, L., Kreuter, M., & Lindberg, C. (2004). Modified exercise test in screening for mitochondrial myopathies – Adjustment of workload in relation to muscle strength. European Neurology, 51, 38–41.  https://doi.org/10.1159/000074981.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hansen, D., Stevens, A., Eijnde, B. O., & Dendale, P. (2012). Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: A critical re-appraisal of current evidence. Sports Medicine, 42, 11–30.  https://doi.org/10.2165/11595460-000000000-00000.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hasselt, P. M. van, Ferdinandusse, S., Monroe, G. R., Ruiter, J. P. N., Turkenburg, M., Geerlings, M. J., Duran, K., Harakalova, M., van der Zwaag, B., Monavari, A. A., Okur, I., Sharrard, M. J., Cleary, M., O’Connell, N., Walker, V., Rubio-Gozalbo, M. E., de Vries, M. C., Visser, G., Houwen, R. H. J., van der Smagt, J. J., Verhoeven-Duif, N. M., Wanders, R. J. A., & van Haaften, G. (2014). Monocarboxylate transporter 1 deficiency and ketone utilization. The New England Journal of Medicine, 371, 1900–1907.  https://doi.org/10.1056/NEJMoa1407778.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hauser, T., Bartsch, D., & Schulz, H. (2011). Reliabilität der Leistung und Laktatkonzentration im maximalen Laktat-steady-state bei Radergometrie. Deutsche Zeitschrift fur Sportmedizin, 62, 320–323.Google Scholar
  49. Heck, H., Mader, A., Hess, G., Mücke, S., Müller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. International Journal of Sports Medicine, 6, 117–130.  https://doi.org/10.1055/s-2008-1025824.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Heitkamp, H.-C., & Hipp, A. (2001). Lactat in der kardialen Rehabilitation. Herz, 26, 447–453.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Heyde, C., Mahler, H., Gollhofer, A., & Roecker, K. (2016). Using Thorax Expansion to Detect a Ventilatory Inflection Point in the Field. International journal of sports medicine, 37(1), 6–11.  https://doi.org/10.1055/s-0035-1555934 PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hill, A. V., & Lupton, H. (1923). Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM, 16, 135–171.  https://doi.org/10.1093/qjmed/os-16.62.135.CrossRefGoogle Scholar
  53. Hofmann, P., Wonisch, M., & Pokan, R. (2017). Laktat-Leistungsdiagnostik: Durchführung und Interpretation. In Kompendium der Sportmedizin (4. Aufl., S. 189–242). Vienna: Springer Vienna.CrossRefGoogle Scholar
  54. Hollmann, W. (1985). Historical remarks on the development of the aerobic-anaerobic threshold up to 1966. International Journal of Sports Medicine, 6, 109–116.  https://doi.org/10.1055/s-2008-1025823.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hollmann, W. (2001). Leistungen der Sportmedizin für die Kardiologie. Deutsche Zeitschrift fur Sportmedizin, 52, 190–196.Google Scholar
  56. Hollmann, W., & Strüder, H. K. (2009). Sportmedizin. Stuttgart, New York:Schattauer Verlag.Google Scholar
  57. Hoogeveen, A. R., & Schep, G. (1997). The plasma lactate response to exercise and endurance performance: Relationships in elite triathletes. International Journal of Sports Medicine, 18, 526–530.  https://doi.org/10.1055/s-2007-972676.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hooker, S. P., Sui, X., Colabianchi, N., Vena, J., Laditka, J., LaMonte, M. J., & Blair, S. N. (2008). Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke, 39, 2950–2957.  https://doi.org/10.1161/STROKEAHA.107.495275.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30, 1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of power in physical performance tests. Sports Medicine, 31, 211–234.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hughes, E. F., Turner, S. C., & Brooks, G. A. (1982). Effects of glycogen depletion and pedaling speed on „anaerobic threshold“. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52, 1598–1607.CrossRefGoogle Scholar
  62. Keijzer, M. H. de, Brandts, R. W., & Brans, P. G. (1999). Evaluation of a biosensor for the measurement of lactate in whole blood. Clinical Biochemistry, 32, 109–112.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kindermann, W., Simon, G., & Keul, J. (1979). The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology and Occupational Physiology, 42, 25–34.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kromer, P., Hirschmüller, A., Dichhuth, H.-H., Gollhofer, A., & Roecker, K. (2011). Der Einfluss der Kurbelfrequenz im Handcycling auf unterschiedliche Referenzpunkte der Laktatleistungskurve. Deutsche Zeitschrift fur Sportmedizin, 62, 22–28.Google Scholar
  65. Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28, 563–575.  https://doi.org/10.1111/j.1744-6570.1975.tb01393.x.CrossRefGoogle Scholar
  66. Leirdal, S., & Ettema, G. (2011). The relationship between cadence, pedalling technique and gross efficiency in cycling. European Journal of Applied Physiology, 111, 2885–2893.  https://doi.org/10.1007/s00421-011-1914-3.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Löllgen, H., & Trappe, H. J. (2000). Leitlinien zur Ergometrie. Z Kardiol, 89, 821–837.Google Scholar
  68. Lormes, W., Lehmann, M., & Steinacker, J. M. (1998). The problems to study plasma lactate. International Journal of Sports Medicine, 19, 223–225.  https://doi.org/10.1055/s-2007-971909.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Maassen, N., & Busse, M. W. (1989). The relationship between lactic acid and work load: A measure for endurance capacity or an indicator of carbohydrate deficiency? European Journal of Applied Physiology and Occupational Physiology, 58, 728–737.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mc Naughton, L. R., Thompson, D., Philips, G., Backx, K., & Crickmore, L. (2002). A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. International Journal of Sports Medicine, 23, 130–135.  https://doi.org/10.1055/s-2002-20133.CrossRefPubMedPubMedCentralGoogle Scholar
  71. McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Exercise physiology (8. Aufl.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.Google Scholar
  72. Meyer, T., Görge, G., Schwaab, B., Hildebrandt, K., Walldorf, J., Schäfer, C., Kindermann, I., Scharhag, J., & Kindermann, W. (2005). An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure: A randomized controlled training study. American Heart Journal, 149, e1–e7.  https://doi.org/10.1016/j.ahj.2004.12.006.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: Lessons from triathletes. Sports Medicine, 39, 179–206.  https://doi.org/10.2165/00007256-200939030-00002.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Minetti, A. E., Ardigò, L. P., & Saibene, F. (1994). The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients. Acta Physiologica Scandinavica, 150, 315–323.  https://doi.org/10.1111/j.1748-1716.1994.tb09692.x.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Owles, W. H. (1930). Alterations in the lactic acid content of the blood as a result of light exercise, and associated changes in the CO(2)-combining power of the blood and in the alveolar CO(2) pressure. The Journal of Physiology, 69, 214–237.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oyono-Enguelle, S., Gartner, M., Marbach, J., Heitz, A., Ott, C., & Freund, H. (2008). Comparison of arterial and venous blood lactate kinetics after short exercise. International Journal of Sports Medicine, 10, 16–24.  https://doi.org/10.1055/s-2007-1024867.CrossRefGoogle Scholar
  77. Péronnet, F., & Morton, R. H. (1994). Plasma lactate concentration increases as a parabola with delay during ramp exercise. European Journal of Applied Physiology and Occupational Physiology, 68, 228–233.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Péronnet, F., Thibault, G., Rhodes, E. C., & McKenzie, D. C. (1987). Correlation between ventilatory threshold and endurance capability in marathon runners. Medicine and Science in Sports and Exercise, 19, 610–615.PubMedPubMedCentralGoogle Scholar
  79. Prettin, S., Roecker, K., Ruehl, S., Deibert, P., Schumacher, Y. O., Hirschmüller, A., & Dickhuth, H.-H. (2011). Changes in blood lactate concentrations during different treadmill exercise test protocols. The Journal of Sports Medicine and Physical Fitness, 51, 179–184.PubMedPubMedCentralGoogle Scholar
  80. Prettin, S., Schnabel, A., Pottgiesser, T., Roecker, K., & Ahlgrim, C. (2013). Reliability of anaerobic lactate threshold concepts in running.  https://doi.org/10.13140/RG.2.1.4726.5120.
  81. Prommer, N., Thoma, S., Quecke, L., Gutekunst, T., Völzke, C., Wachsmuth, N., Niess, A. M., & Schmidt, W. (2010). Total hemoglobin mass and blood volume of elite Kenyan runners. Medicine and Science in Sports and Exercise, 42, 791–797.  https://doi.org/10.1249/MSS.0b013e3181badd67.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Racine, P., Klenk, H. O., & Kochsiek, K. (1975). Rapid lactate determination with an electrochemical enzymatic sensor: Clinical usability and comparative measurements. Zeitschrift für Klinische Chemie und Klinische Biochemie, 13, 533–539.PubMedPubMedCentralGoogle Scholar
  83. Roecker, K. (2008). Streit um des Kaisers Bart: Welche Laktatschwelle ist die beste? Deutsche Zeitschrift fur Sportmedizin, 59, 303–304.Google Scholar
  84. Roecker, K. (2013a). Die sportmedizinische Laktatdiagnostik: Technische Rahmenbedingungen und Einsatzbereiche. Deutsche Zeitschrift fur Sportmedizin, 2013, 1–5.  https://doi.org/10.5960/dzsm.2013.110.CrossRefGoogle Scholar
  85. Roecker, K. (2013b). Die sportmedizinische Laktatdiagnostik: Technische Rahmenbedingungen und Einsatzbereiche. Deutsche Zeitschrift fur Sportmedizin, 64, 367–371.Google Scholar
  86. Roecker, K., & Dickhuth, H. (2001). Praxis der Laktatmessung. Deutsche Zeitschrift fur Sportmedizin, 52, 33–34.Google Scholar
  87. Roecker, K., Schotte, O., Niess, A. M., Horstmann, T., & Dickhuth, H.-H. (1998). Predicting competition performance in long-distance running by means of a treadmill test. Medicine and Science in Sports and Exercise, 30, 1552–1557.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Roecker, K., Mayer, F., Striegel, H., & Dickhuth, H.-H. (2000). Increase characteristics of the cumulated excess-CO2 and the lactate concentration during exercise. International journal of sports medicine, 21(6), 419–423.  https://doi.org/10.1055/s-2000-3836 PubMedCrossRefPubMedCentralGoogle Scholar
  89. Roecker, K., Niess, A. M., Horstmann, T., Striegel, H., Mayer, F., & Dickhuth, H.-H. (2002). Heart rate prescriptions from performance and anthropometrical characteristics. Medicine and Science in Sports and Exercise, 34, 881–887.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Roecker, K., Striegel, H., & Dickhuth, H.-H. (2003). Heart-rate recommendations: Transfer between running and cycling exercise? International Journal of Sports Medicine, 24, 173–178.  https://doi.org/10.1055/s-2003-39087.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Roecker, K., Prettin, S., Sorichter, S., Schmidt-Trucksäß, A., & Dickhuth, H. (2004). Flache Atmung beim Laufen mit zur Schrittfolge gekoppelter Atemfrequenz bei einem jugendlichen Triathleten. Deutsche Zeitschrift fur Sportmedizin, 55, 6–11.Google Scholar
  92. Roecker, K., Prettin, S., Pottgiesser, T., Schumacher, Y. O., & Dickhuth, H.-H. (2010). Metabolische Leistungsdiagnostik und Trainingssteuerung in der Sportmedizin. Sport- und Präventivmedizin, 40, 6–12.CrossRefGoogle Scholar
  93. Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L., & Gladden, B. L. (2015). Lactate is always the end product of glycolysis. Frontiers in Neuroscience, 9, 22.  https://doi.org/10.3389/fnins.2015.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Saltin, B., & Astrand, P. O. (1967). Maximal oxygen uptake in athletes. Journal of Applied Physiology, 23, 353–358.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Schnohr, P., Marott, J. L., Jensen, J. S., & Jensen, G. B. (2011). Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: The Copenhagen City Heart Study. European Journal of Cardiovascular Prevention and Rehabilitation, 19, 73–80.  https://doi.org/10.1177/1741826710393196.CrossRefGoogle Scholar
  96. Seiler, K. S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5, 276–291.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Smekal, G., von Duvillard, S. P., Pokan, R., Tschan, H., Baron, R., Hofmann, P., Wonisch, M., & Bachl, N. (2003). Changes in blood lactate and respiratory gas exchange measures in sports with discontinuous load profiles. European Journal of Applied Physiology, 89, 489–495.  https://doi.org/10.1007/s00421-003-0824-4.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Stegmann, H., Kindermann, W., & Schnabel, A. (1981). Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine, 2, 160–165.  https://doi.org/10.1055/s-2008-1034604.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wahl, P., Bloch, W., & Mester, J. (2009). Moderne Betrachtungsweisen des Laktats: Laktat ein uberschatztes und zugleich unterschatztes Molekul. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 57, 100–107.Google Scholar
  100. Wasserman, K. (1997). Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest, 112, 1091.  https://doi.org/10.1378/chest.112.4.1091.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wasserman, K., & McIlroy, M. B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American Journal of Cardiology, 14, 844–852.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wasserman, K., Whipp, B. J., Koyl, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35, 236–243.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Weichenberger, M., Liu, Y., & Steinacker, J. M. (2012). A test for determining endurance capacity in fencers. International Journal of Sports Medicine, 33, 48–52.  https://doi.org/10.1055/s-0031-1284349.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Weippert, M., & Kreuzfeld, S. (2008). Vergleich eines mobilen Laktatmessgerätes mit einem Laboranalysegerät – Lactatescout vs. miniphotometer 8. Deutsche Zeitschrift fur Sportmedizin, 59, 46–49.Google Scholar
  105. Weston, S. B., & Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4, 357–366.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Whipp, B. J., Ward, S. A., Lamarra, N., Davis, J. A., & Wasserman, K. (1982). Parameters of ventilatory and gas exchange dynamics during exercise. Journal of Applied Physiology, 52, 1506–1513.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Whipp, B. J., Davis, J. A., & Wasserman, K. (1989). Ventilatory control of the „isocapnic buffering“ region in rapidly-incremental exercise. Respiration Physiology, 76, 357–367.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Yardley, M., Havik, O. E., Grov, I., Relbo, A., Gullestad, L., & Nytrøen, K. (2016). Peak oxygen uptake and self-reported physical health are strong predictors of long-term survival after heart transplantation. Clinical Transplantation, 30, 161–169.  https://doi.org/10.1111/ctr.12672.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Angewandte Gesundheitsförderung und Bewegungsmedizin (IfAG)Hochschule FurtwangenFurtwangenDeutschland

Section editors and affiliations

  • Holger HW Gabriel
    • 1
  1. 1.Lehrstuhl für Sportmedizin und GesundheitsförderungFriedrich-Schiller-Univesität JenaJenaDeutschland

Personalised recommendations