CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio

Structural Analysis

  • Mikel Zatarain
Reference work entry
DOI: https://doi.org/10.1007/978-3-662-53120-4_6543

Synonyms

Definition

The process of evaluation of the stresses and of the distortion of a mechanical structure when submitted to load constraints.

Theory and Application

In the machine building industry, the most frequently used materials have an isotropic behavior. For these materials, some geometrically simple structures can be analyzed by analytical methods, what means to integrate the Hooke’s law for isotropic materials in the structure domain. Hooke’s law for these materials can be written as (Young and Budynas 2001):
$$ \kern0.5em \left[\begin{array}{c}{\varepsilon}_{xx}\\ {}{\varepsilon}_{yy}\\ {}{\varepsilon}_{zz}\\ {}{\varepsilon}_{yz}\\ {}{\varepsilon}_{zx}\\ {}{\varepsilon}_{xy}\end{array}\right]=\frac{1}{E}\left[\begin{array}{cccccc}1& -v& -v& 0& 0& 0\\ {}-v& 1& -v& 0& 0& 0\\ {}-v& -v& 1& 0& 0& 0\\ {}0& 0& 0& 1+v& 0& 0\\ {}0& 0& 0& 0& 1+v& 0\\ {}0& 0& 0& 0& 0& 1+v\end{array}\right]\ \left[\begin{array}{c}{\sigma}_{xx}\\...
This is a preview of subscription content, log in to check access.

References

  1. Clough R, Penzien J (1975) Dynamics of structures. McGraw-Hill, New YorkzbMATHGoogle Scholar
  2. Craig R, Bampton M (1968) Coupling of substructures for dynamic analysis. AIAA J 6:1313–1319zbMATHCrossRefGoogle Scholar
  3. Craig RR, Kurdila AJ (2006) Fundamentals of structural dynamics, 2nd edn. Wiley, HobokenzbMATHGoogle Scholar
  4. Guyan R (1965) Reduction of mass and stiffness matrices. AIAA J 3(2):380CrossRefGoogle Scholar
  5. Hurty W, Rubinstein M (1964) Dynamics of structures. Prentice Hall, Englewood CliffGoogle Scholar
  6. Irons B (1965) Structural eigenvalue problem: elimination of unwanted variables. AIAA J 3:961–962CrossRefGoogle Scholar
  7. Mancisidor I, Zatarain M, Munoa J, Dombovari Z (2011) Fixed boundaries receptance coupling substructure analysis for tool point dynamics prediction. Adv Mater Res 223:622–631CrossRefGoogle Scholar
  8. Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13(8):995–1006zbMATHCrossRefGoogle Scholar
  9. Young W, Budynas R (2001) Roark’s formulas for stress and strain, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  10. Zienkiewicz O, Taylor R (2000) The finite element method. Heinemann, Butterworth, OxfordzbMATHGoogle Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  • Mikel Zatarain
    • 1
  1. 1.IK4-IdekoElgoibarSpain

Section editors and affiliations

  • Hans-Christian Möhring
    • 1
  1. 1.Institut für WerkzeugmaschinenUniversität StuttgartStuttgartGermany