CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio

Cutting of Inconel and Nickel Base Materials

  • Eckart UhlmannEmail author
Reference work entry



Nickel base materials have outstanding resistance to thermal, mechanical, and corrosive stresses. They include up to 15 elements with a portion of more than 50% in weight and are able to resist long-term stresses up to a homologous temperature, which is the ratio between the temperature load and the melting temperature, of approximately 0.85 (Buergel 2006). Nickel base materials are used in gas turbines, jet engines, space vehicles, and many more modern applications with extreme conditions.

However, due to the outstanding capabilities the material is hard to machine (Donachie and Donachie 2002). To understand the machinability of nickel base materials the following characteristics are essential (Wiemann 2006):
  • Toughness stays stable with the temperature.

  • Strain hardening is common.

  • The structure includes hard and abrasive carbides.

  • Poor heat conductivity leads to high temperatures in the cutting process.

  • Diffusive...

This is a preview of subscription content, log in to check access.


  1. Buergel R (2006) Handbuch hochtemperatur-werkstofftechnik [Handbook of high-temperature alloys], 3rd edn. Vieweg & Sohn Verlag, Wiesbaden (in German)Google Scholar
  2. Donachie M, Donachie S (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials ParkGoogle Scholar
  3. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86:1–16CrossRefGoogle Scholar
  4. Ezugwu EO, Bonney J, Fadare DA, Sales WF (2005) Machining of nickel-base, Inconel 718, alloy with ceramic tool under finishing conditions with various coolant supply pressures. In: Dobrzanski L (ed) Journals of Materials Processing Technology, pp 162–163Google Scholar
  5. Gerschwiler K (2002) Drehen und Fräsen von Nickelbasislegierungen [Turning and milling of nickel-base alloys]. In: Klocke F (ed) Tagungsband “Perspektiven der Zerspantechnik: Entwicklung und Integration der Fertigungsprozesse von morgen” [Proceedings “Material Removal Technology Perspectives: Development and Integration of Future Production Processes”]. WZL der RWTH Aachen University, pp 183–197 (in German)Google Scholar
  6. Gey C (2003) Prozessauslegung für das Flankenfräsen von Titan [Process parameters for shoulder milling of titanium]. VDI Verlag, Düsseldorf (in German). Fortschritt-Berichte VDI 2(625)Google Scholar
  7. Rodrigues MA, Hassui A (2008) An investigation into the high speed milling of the nickel base alloy Inconel 625 with ceramic cutting tools. In: Byrne G, O’Donnel G (eds) Proceedings of the 3rd international CIRP high performance cutting conference, Dublin, IrelandGoogle Scholar
  8. Uhlmann E, Wacinski M (2010) Development and test of monolithic ceramic end milling cutters for high speed machining of nickel-based alloys. In: Aoyama T, Takeuchi Y (eds) Proceedings of the HPC2010, 4th CIRP international conference on high performance cutting, GifuGoogle Scholar
  9. Uhlmann E, Wiemann E (2004) High-speed milling and high-performance milling of nickel-base alloys. International Conference on High Speed Machining, NanjingGoogle Scholar
  10. Uhlmann E, Oyanedel Fuentes JA, Keunecke M (2009) Machining of high performance workpiece materials with CBN coated cutting tools. Thin Solid Films 518(5):1451–1454CrossRefGoogle Scholar
  11. Vagnorius Z, Sørby K (2011) Effect of high-pressure cooling on life of SiAlON tools in machining of Inconel 718. Int J Adv Manuf Technol 54(1):83–92CrossRefGoogle Scholar
  12. Wei GC, Becher PF (1985) Development of SiC-reinforce ceramics. Ceram Bull 64(2):298–304Google Scholar
  13. Wiemann E (2006) Hochleistungsfräsen von superlegierungen [High-performance cutting of supra-alloys]. In: Uhlmann E (ed) Berichte aus dem produktionstechnischen zentrum Berlin. Fraunhofer IRB Verlag, Berlin (in German)Google Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  1. 1.Fraunhofer Institute for Production Systems and Design TechnologyBerlinGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland