CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio

Grinding Burn

  • Konrad WegenerEmail author
  • Christoph Baumgart
Reference work entry



Grinding burn subsumes all unwanted changes in the surface and subsurface region of the workpiece due to heat release out of the grinding process.

This comprises microstructural changes, high residual tensile stresses, and cracks (Karpuschewski et al. 2011). It has to be avoided by an appropriate choice of the process parameters, grinding tool, and coolant strategies. Process monitoring is necessary in order to avoid malfunctions of components due to the thermal damage.

Grinding burn is in literature (e.g., Littmann 1953; Malkin 1974) used to characterize the visible surface damage. Most damage due to the grinding process is by the nature of the manufacturing process of thermal origin and can consist, besides oxidation of the surface, also of metallurgical phase transformations, softening of the surface layer with possible rehardening, changes in residual tensile stresses, cracks, and resulting in a reduced fatigue strength (Malkin and...

This is a preview of subscription content, log in to check access.


  1. Alonso U, Ortega N, Sanchez JA, Pombo I, Izquierdo B, Plaza S (2015) Hardness control of grind-hardening and finishing grinding by means of area-based specific energy. Int J Mach Tool Manu 88:24–33CrossRefGoogle Scholar
  2. Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process. Ann CIRP Manuf Technol 45(1):283–286CrossRefGoogle Scholar
  3. Denkena B, Köhler J, Schindler A, Woiwode S (2014) Continuous generating grinding – material engagement in gear tooth root machining. Mech Mach Theory 81:11–20CrossRefGoogle Scholar
  4. Guo C, Malkin S (1994) Analytical and experimental investigation of burnout in creep-feed grinding. Ann CIRP Manuf Technol 43(1):283–286CrossRefGoogle Scholar
  5. Heinzel C, Sölter J, Jermolajev S, Kolkwitz B, Brinksmeier E (2014) A versatile method to determine thermal limits in grinding. Procedia CIRP 13:131–136CrossRefGoogle Scholar
  6. Höhn B-R, Stahl K, Oster P, Tobie T, Schwienbacher S, Koller P (2011) Flank-load-carrying capacity of case hardened gears with grinding burn. In: Proceedings of the ASME 2011 international design and engineering conferences & computers and engineering in engineering conference IDET/CIE 2011, pp 1–8Google Scholar
  7. Karpuschewski B (1995) Mikromagnetische Randzonenanalyse geschliffener einsatzgehärteter Bauteile [Micromagnetic sub surface analysis of ground case hardened parts]. PhD thesis, University Hannover, Fortschritt-Berichte VDI, Reihe 8, Mess-, Steuerungs- und Regelungstechnik Nr. 498 (in German)Google Scholar
  8. Karpuschewski B, Bleicher O, Beutner M (2011) Surface integrity inspection on gears using Barkhausen noise analysis. In: 1st CIRP conference on surface integrity (CSI), Bremen, 30 Jan–1 Feb 2012. Procedia engineering, vol 19, pp 162–171Google Scholar
  9. Klocke F (2009) Manufacturing processes 2 – grinding, honing, lapping. Springer, Berlin/HeidelbergGoogle Scholar
  10. Littmann WE (1953) The influence of the grinding process on the structure of hardened steel. Doctoral thesis, Massachusetts Institute of TechnologyGoogle Scholar
  11. Liu M, Nguyen T, Zhang LC, Wu Q, Sun DL (2015) Effect of grinding-induced cyclic heating on the hardened layer generation in the plunge grinding of a cylindrical component. Int J Mach Tool Manu 89:55–63CrossRefGoogle Scholar
  12. Malkin S (1974) Thermal aspects of grinding part 2 – surface temperatures and workpiece burn. ASME J Eng Ind 96(4):1184–1191CrossRefGoogle Scholar
  13. Malkin S, Anderson RB (1974) Thermal aspects of grinding part 1 – energy partition. ASME J Eng Ind 96(4):1177–1183CrossRefGoogle Scholar
  14. Malkin S, Guo C (2007) Thermal analysis of grinding. Ann CIRP Manuf Technol 56(2):760–782CrossRefGoogle Scholar
  15. Rowe WB (2014) Principles of modern grinding technology. William Andrew/Elsevier, Waltham/OxfordGoogle Scholar
  16. Santa-aho S, Sorsa A, Hakanen M, Leiviskä K, Vippola M, Lepisto T (2014) Barkhausen noise-magnetizing voltage sweep measurement in evaluation of residual stress in hardened components. Meas Sci Technol 25(8):085602, 6 pp.
  17. Thiemann P, Ströbel G, Goch G (2013) Mikromagnetische und photothermische Charakterisierung thermo-mechanischer Schädigungen [Micromagnetic and photothermal characterization of thermo-mechanical damages]. Tech Mess 80(6):206–212. (in German)CrossRefGoogle Scholar
  18. Webster J, Marinescu I, Bennett R, Lindsay R (1994) Acoustic emission for process control and monitoring of surface integrity during grinding. Ann CIRP Manuf Technol 43(1):299–304CrossRefGoogle Scholar
  19. Yang Z, Wu H, Yu Z, Huang Y (2014) A non-destructive surface burn detection method for ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process. Meas Sci Technol 25(3):035602, 9 ppCrossRefGoogle Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  1. 1.Institut für Werkzeugmaschinen und Fertigung (IWF)ETH ZürichZürichSwitzerland

Section editors and affiliations

  • Jan C. Aurich
    • 1
  1. 1.FBK – Institute for Manufacturing Technology and Production SystemsUniversity of KaiserslauternKaiserslauternGermany