CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio

Specific Energy

  • Konstantinos SalonitisEmail author
  • Apostolos Fysikopoulos
  • John Paralikas
  • George Chryssolouris
Reference work entry



Specific energy is defined as the ratio of the energy required for the processing of a unit volume of material. It is a very important parameter, especially for the machining processes, and can be used as metric of comparing the energy requirements between different manufacturing processes. It has been defined in detail for almost all conventional manufacturing processes and research has been focused in estimating this in detail (indicatively for grinding process, Mishra and Salonitis 2013 calculated empirically the specific energy for grinding processes).

Specific energy can be defined for non-conventional manufacturing processes as well. Electrophysical and chemical processes are in general material removal processes. Specific energy ( SE) is defined in their case as the ratio of the required energy ( E) for removing a specific volume of material, to the volume of material removed ( V):
$$ SE=\frac{E}{A} $$
This is a preview of subscription content, log in to check access.


  1. Ahmadi M, Erfan MR, Torkamany MJ, Safian GA (2011) The effect of interaction time and saturation of rock on specific energy in Nd:YAG laser perforating. Opt Laser Technol 43:226–231CrossRefGoogle Scholar
  2. Ahmadi M, Erfan MR, Torkamany MJ, Sabbaghzadeh J (2012) The effect of confining pressure on specific energy in Nd:YAG laser perforating of rock. Opt Laser Technol 44(1):57–62CrossRefGoogle Scholar
  3. Choi J, Choudhuri SK, Mazumder J (2000) Role of preheating and specific energy input on the evolution of microstructure and wear properties of laser clad Fe-Cr-C-W alloys. J Mater Sci 35(13):3213–3219CrossRefGoogle Scholar
  4. Chryssolouris G (1991) Laser machining-theory and practice. Springer, New YorkCrossRefGoogle Scholar
  5. Coelho JP, Abreu MA, Pires MC (2000) High-speed laser welding of plastic films. Opt Lasers Eng 34:385–395CrossRefGoogle Scholar
  6. Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New YorkGoogle Scholar
  7. Dekeyser W, Snoeys R, Jennes M (2003) A thermal model to investigate the wire rupture phenomenon for improving performance in EDM wire cutting. J Manuf Syst 4(2):179–109CrossRefGoogle Scholar
  8. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: Proceedings of the 13th CIRP international conference on life cycle engineering (LCE2006), Leuven, 31 May–2 June 2006, pp 623–628Google Scholar
  9. Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci Tech Sci 52:4Google Scholar
  10. Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Technol 32:34–41CrossRefGoogle Scholar
  11. Liao YS, Yu YP (2004) Study of specific discharge energy in WEDM and its application. Int J Mach Tools Manuf 44:1373–1380CrossRefGoogle Scholar
  12. Mackwood AP, Crafer RC (2005) Thermal modelling of laser welding and related processes: a literature review. Opt Laser Technol 37:99–115CrossRefGoogle Scholar
  13. Mishra VK, Salonitis K (2013) Empirical estimation of grinding specific forces and energy based on a modified Werner grinding model. Procedia CIRP 8:287–292CrossRefGoogle Scholar
  14. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40:316–323CrossRefGoogle Scholar
  15. Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69:245–256CrossRefGoogle Scholar
  16. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2016) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85:2401–2411CrossRefGoogle Scholar
  17. Thawari G, Sarin Sundar JK, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239CrossRefGoogle Scholar
  18. Tian X, Günster J, Melcher J, Li D, Heinrich JG (2009) Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi’s method. J Eur Ceram Soc 29(10):1903–1915CrossRefGoogle Scholar
  19. Tönshoff HK, Eggerl R, Klockez F (1996) Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann Manuf Technol 45(2):553–568CrossRefGoogle Scholar
  20. Tsoukantas G, Salonitis K, Stavropoulos P, Chryssolouris G (2002) An overview of 3D laser materials’ processing concepts. In: Proceedings of SPIE – the international society for optical engineering, vol 5131, pp 224–228Google Scholar
  21. Xu Z, Reed CB, Konercki G, Parker RA, Gahan BC, Bataresh S, Graves RM, Figueroa H, Skinner H (2003) Specific energy for pulsed laser rock drilling. J Laser Appl 15(1):25CrossRefGoogle Scholar
  22. Zeng X, Zhu B, Tao Z, Cui K (1996) Analysis of energy conditions for laser cladding ceramic-metal composite coatings. Surf Coat Technol 79:162–169CrossRefGoogle Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  • Konstantinos Salonitis
    • 1
    Email author
  • Apostolos Fysikopoulos
    • 2
    • 3
  • John Paralikas
    • 2
  • George Chryssolouris
    • 2
  1. 1.Manufacturing DepartmentCranfield UniversityCranfieldUK
  2. 2.Laboratory for Manufacturing Systems and Automation (LMS), Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece
  3. 3.Automation Systems – Materials & Process TechnologiesCOMAU SpAGrugliascoItaly

Section editors and affiliations

  • Ludger Overmeyer
    • 1
  1. 1.Institut für Transport- und AutomatisierungstechnikGottfried Wilhelm Leibniz Universität HannoverGarbsenDeutschland