CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio

Ceramic Cutting Tools

  • Raouf Ben AmorEmail author
  • Dev Banerjee
Reference work entry
DOI: https://doi.org/10.1007/978-3-662-53120-4_16687

Synonyms

Definition

Ceramics are inorganic, nonmetallic materials. The structure of ceramics may be crystalline or partly crystalline (having intergranular amorphous phases). The definition of ceramic is often restricted to inorganic crystalline materials.

Ceramics are primarily divided into two classes: whiteware ceramic and technical ceramic (refer to section “Synonyms”). Whiteware ceramics typically possess poor mechanical properties. Technical ceramic materials are of high purity and are designed for specific application and use. Ceramics used in wear applications are harder compared to metallic materials, maintain strength and hardness, and are chemically inert at high temperatures. The combination of hardness, high-temperature strength, and chemical resistivity makes ceramics important cutting tool materials.

Theory and Application

Introduction

C...

This is a preview of subscription content, log in to check access.

References

  1. Becher et al (1998) Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. Am Ceram Soc 81(11):2821–2830CrossRefGoogle Scholar
  2. Becher et al (2006) Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater Sci Eng A 422:85–91CrossRefGoogle Scholar
  3. Belcher et al (1988) Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc 71:1050–1061CrossRefGoogle Scholar
  4. Belmonte et al (2010) Spark plasma sintering: a powerful tool to develop new silicon nitride-based materials. J Eur Ceram Soc 30(14):2937–2946CrossRefGoogle Scholar
  5. Blugan et al (2005) Fractography, mechanical properties, and microstructure of commercial silicon nitride–titanium nitride composites. J Am Ceram Soc 88(4):926–933CrossRefGoogle Scholar
  6. Bradley et al (1989) Silicon carbide whisker stability during processing of silicon nitride matrix composites. J Am Ceram Soc 12:628–636CrossRefGoogle Scholar
  7. Carman et al (2009) Grain boundary evolution in sm- and nd-sialons during post-sintering heat treatment. J Aus Ceram Soc 45(1):27–34Google Scholar
  8. Casto et al (1996) Machining of steel with advanced ceramic cutting tools. Key Eng Mater 114:105–134Google Scholar
  9. Chen et al (2003) Development of tough alpha sialon. Key Eng Mater 237:65–78Google Scholar
  10. Chockalingam S et al (2009) Phase transformation and densification behavior of microwave sintered Si3N4–Y2O3–MgO–ZrO2 system. Int J Appl Ceram Technol 6(1):102–110CrossRefGoogle Scholar
  11. Feng et al (2003) Effect of amount of additives and post-heat treatment on the microstructure and mechanical properties of yttrium–α-sialon ceramics. J Am Ceram Soc 86(12):2136–2142CrossRefGoogle Scholar
  12. Feng et al (2006) Microstructures of microwave⃞sintered silicon nitride with zirconia as secondary particulates. J Am Ceram Soc 89(12):3770–3777CrossRefGoogle Scholar
  13. Garnier et al (2005) Influence of sic whisker morphology and nature of sic/al2o3 interface on thermomechanical properties of sic reinforced Al2O3 composites. J Eur Ceram Soc 25:3485–3493Google Scholar
  14. Hoffman MJ, Holzer S (2003) Processing and microstructural evolution of rare earth containing sialons. Key Eng Mater 237:141–148Google Scholar
  15. Huang et al (2012) Effect of Y-α-Sialon seeding and holding time on the formation of elongated (Ca,Dy)-α-Sialon crystals prepared via carbothermal reduction and nitridation. J Am Ceram Soc 95(9):2777–2781CrossRefGoogle Scholar
  16. Hutchison JW (1989) Theoretical and applied mechanics. In: Germain P, Piau M, Caillerie D (eds). Elsevier, p 139Google Scholar
  17. Ighodaro et al (2008) Fracture toughness enhancement for alumina systems: a review. J Appl Ceram Technol 5(3):313–323CrossRefGoogle Scholar
  18. Jianxin et al (2005) Self-lubricating behaviors of al2o3/tib2 ceramic tools in dry high-speed machining of hardened steel. J Eur Ceram Soc 25:1073–1079Google Scholar
  19. Kamanduri R, Samanta SK (1989) ASM handbook, vol 16. ASM International, Materials Park, pp 98–104Google Scholar
  20. Kitayama et al (2001) Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE 5 La, Nd, Gd, Y, Yb, and Sc) oxide additives. J Am Ceram Soc 84(2):353–358CrossRefGoogle Scholar
  21. Kleebe et al (1999) Microstructure and fracture toughness of Si3N4 ceramics. J Am Ceram Soc 82(7):1857–1867CrossRefGoogle Scholar
  22. Kodama et al (1990) Toughening of silicon nitride matrix composites by the addition of both silicon carbide whiskers and silicon carbide particles. J Am Ceram Soc 73(3):78–83MathSciNetCrossRefGoogle Scholar
  23. Krishnamurthy S, Sivashankaran V (1994) Machining of cast iron with advanced ceramic tools. Key Eng Mater 96:221-0Google Scholar
  24. Liu et al (2008) Effect of different rare-earth on microstructure and properties of α-sialon ceramics. J Mater Sci Technol 24(6):878–882Google Scholar
  25. Mandal H (1999) Preparation of multiple-cation α-sialon ceramics containing lanthanum. J Am Ceram Soc 82(1):229–232MathSciNetCrossRefGoogle Scholar
  26. Markys et al (1993) Microstructure and fracture toughness of hot pressed zirconia toughened sialon. J Am Ceram Soc 76(6):1401–1408CrossRefGoogle Scholar
  27. Nishimura et al (1995) Fabrication of silicon nitride nano-ceramics by spark plasma sintering. J Mater Sci Lett 14(15):1046–1047CrossRefGoogle Scholar
  28. North B (1987) Ceramic cutting tools, a review. Int J High Technol Ceram 3:113–127CrossRefGoogle Scholar
  29. Osayande L et al (2008) Fracture toughness enhancement for alumina systems: a review. Int J Appl Ceram Technol 5(3):313–323CrossRefGoogle Scholar
  30. Park et al (1998) Extra-large grains in the silicon nitride ceramics doped with yttria and hafnia. J Am Ceram Soc 81(7):1876–1880CrossRefGoogle Scholar
  31. Pettersson P, Johnsson M (2003) Thermal shock properties of alumina reinforced with Ti(C,N) whiskers. J Eur Ceram Soc 23:309–313Google Scholar
  32. Sajgalik et al (2006) In situ preparation of Si3N4/SiC nanocomposites for cutting tools application. Int J Appl Ceram Technol 3(1):41–46Google Scholar
  33. Santos et al (2008) High temperature properties of silicon nitride with neodymium oxide additions. Mater Sci Forum 591–593:560–564Google Scholar
  34. Satet et al (2005) Influence of the rare-earth element on the mechanical properties of RE–Mg-Bearing Silicon Nitride. J Am Ceram Soc 88(9):2485–2490CrossRefGoogle Scholar
  35. Wang et al (1996) Grain boundary films in rare earth glass based silicon nitride. J Am Ceram Soc 79(3):788–792CrossRefGoogle Scholar
  36. Ye et al (2003) Effect of amount of additives and post-heat treatment on the microstructure and mechanical properties of yttrium–α-sialon ceramics, J Am Ceram Soc 86(12):2136–2142Google Scholar
  37. Ye et al (2004) Microstructural development of Y-Α/(Î’)-sialons after post heat-treatment and its effect on mechanical properties. Ceram Int 30:229–238Google Scholar
  38. Yin et al (2013) Preparation and characterization of Al2O3/Tic micro-nano-composite ceramic tool materials. Ceram Int 39:4253–4262Google Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  1. 1.Kennametal Shared Services GmbHFürthGermany
  2. 2.Kennametal Inc.LatrobeUSA

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland