Advertisement

Strömungssieden gesättigter, reiner Flüssigkeiten

  • Matthias Kind
  • Yasushi Saito
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Mayinger, F.: Strömungen und Wärmeübergang in Gas-Flüssigkeits-Gemischen. Springer, Vienna/New York (1982)CrossRefGoogle Scholar
  2. 2.
    Dukler, A.E.: Fluid mechanics and heat transfer in faIIing film systems. Chem. Eng. Progr. Symp. Ser. 56, 1–10 (1960)Google Scholar
  3. 3.
    Hewitt, G.F.: Analysis of annular two-phase flow; Application of the Dukler analysis to vertical upward flow in a tube. Atomic Energy Research Establishment, Report AERE-R 3680 (1961)Google Scholar
  4. 4.
    Steiner, D.: Wärmeübergang beim Strömungsverdampfen von Reinstoffen und von Mischungen. Habilitation Univ. Karlsruhe (1996)Google Scholar
  5. 5.
    Thome, J.R. (Hrsg.): Encyclopedia of Two-Phase Heat Transfer and Flow I. Fundamentals and Methods; 4 World Scientific, New Jersey (2015) . http://www.worldscientific.com/worldscibooks/10.1142/9310. Zugegriffen am 27.11.2018
  6. 6.
    Yanai, M.: Flow Boiling Heat Transfer in a Vertical Channel. (O Japanese). Dr. Thesis Kyoto University (1971)Google Scholar
  7. 7.
    Bennett, J.A.R., Collier, J.G., Pratt, H.R.C., et al.: Heat ransfer to two-phase gas-liquid systems. Part I. Steam-water mixtures in the liquid-dispersed region in an annulus. Report AERE-R 3159 (1959) and Trans. Instn. Chern. Engnrs. Bd. 39, S. 113–126 (1961)Google Scholar
  8. 8.
    Collier, J.G., Lacey, P.M.C., Pulling, D.J.: Heat transfer to two-phase gas-liquid systems. Part II. Further data on steam/water mixtures in the liquid dispersed region in an annulus. Report AERE-R 3809 (1962) and Trans. Instn. Chem. Engrs. Bd. 42, T 127/T 139 (1964)Google Scholar
  9. 9.
    Thome, J.R. (Hrsg.): Encyclopedia of Two-Phase Heat Transfer and Flow II. Special Topics and Applications, 4 World Scientific, New Jersey (2015) . http://www.worldscientific.com/worldscibooks/10.1142/9311
  10. 10.
    Somerville, G.F.: Downflow boiling of n-butanol in a uniformly heated tube. M. Thesis, University of California, Lawrence Radiation Lab., Report UCRL-10 527 (1962).Google Scholar
  11. 11.
    Haβdenteufel, W.: Wärmeübergang und Druckverlust bei Zweiphasenströmung. Dissertation, University Stuttgart (1983)Google Scholar
  12. 12.
    Lavin, J.G.: Heat Transfer to refrigerants boiling inside plain tubes and tubes with internal turbulators. D. Thesis, University of Michigan (1963)Google Scholar
  13. 13.
    Pujol, L.: Boiling heat transfer in vertical upflow and downflow tubes. Ph. D. Thesis, Lehigh University (1968)Google Scholar
  14. 14.
    Riedle, K., Purcupile, J.C., et al.: Experimental and analytical investigation – boiling heat transfer in evaporator tubes horizontal flow. Carnegie-Mellon University, NSF-Grant257, CMU, No. 1-55 307 (1971) and: Experimental investigation boiling heat transfer in evaporator tubes-vertical flow, AIChE Preprint 18, 14th National Heat Transfer Conference, Atlanta (1973)Google Scholar
  15. 15.
    Dengler, C.E.: Heat transfer and pressure drop for evaporation of water in a vertical tube. Sc. D. Thesis in Chem. Eng., Massachusetts Institute of Technology (1952)Google Scholar
  16. 16.
    Katsuki, N., Sekoguchi, K., et al.: Momentum and heat transfer in flow-boiling. (orig. Japanese). Master Thesis Kyushu University (1979)Google Scholar
  17. 17.
    Sani, R.L.: Downflow boiling and nonboiling heat transfer in a uniformly heated tube. Master Thesis, University of California, Lawrence Radiation Lab. Report UCRL-9023 (1960)Google Scholar
  18. 18.
    Schrock, V.E., Grossman, L.M.: Forced convection boiling studies – forced convection vaporization project – final report. University of California, Institute of Engineering Research. Series No. 73308 – UCX 2182, TID-14 632 (1959)Google Scholar
  19. 19.
    Wright, R.M.: Downflow forced convection boiling of water in uniformly heated tubes. Ph. D. Thesis, University of California, Lawrence Radiation Lab. Report UCRL-9744 (1961)Google Scholar
  20. 20.
    Styrikovich, M.A., Miropolskii, Z.L.: Phase separation in high-pressure water-steam streams in heated horizontal tubes DokI. Akad. Nauk SSSR. 71(2), 279–282 (1950)Google Scholar
  21. 21.
    Styrikovich, M.A., Miropolskii, Z.L.: The temperature regime for operational horizontal and inclined steam-generating tubes at high pressures. In: Styrikovich, M.A. (Hrsg.) Hydrodynamics and Heat Transfer During Boiling in High Pressure boilers, S. 244–272. Akad. Nauk SSSR, Moskau (1955)Google Scholar
  22. 22.
    Chaddock, J.B., Noerager, J.A.: Evaporation of refrigerant 12 in a horizontal tube with constant wall heat flux. ASHRAE Trans. 72, 90–103 (1966)Google Scholar
  23. 23.
    Djatchkow, F.N.: Heat transfer and pressure drop studies in the evaporation of R 22 in inside-finned tubes (orig. Russ.) Cholodilnaja Technika 7, 22–28 (1977)Google Scholar
  24. 24.
    Bonn, W., Iwicki, J., Steiner, D., et al.: Über die Auswirkungen der Ungleichverteilung des Wärmeübergangs am Rohrumfang bei der Verdampfung im waagerecht durchströmten Rohr. Wärme- und Stoffübertragung 13, 265–274 (1980)CrossRefGoogle Scholar
  25. 25.
    Fuchs, P.H.: Influence of tube material and external heat load on heat transfer coefficients with separated flow in evaporators. XV International Congress of Refrigeration, Venice (1979) B 1-43, 1/4 and: Pressure drop and heat transfer during flow of evaporating liquid in horizontal tubes and in return bends (orig. Norweg.). D. Thesis, Institutt for Kjøleteknikk, Norges Tekniske Høgskole, Trondheim (1975)Google Scholar
  26. 26.
    Gouse, W., Coumou, K.G.: Heat transfer and fluid flow inside a horizontal tube evaporator: phase I. ASHRAE Trans. 71, 152–160 (1965)Google Scholar
  27. 27.
    Bell, K.J., Owhadi, A.: Local heat-transfer measurements during forced-convection boiling in a helically coiled tube. Proc. Instn. Mech. Eng. 184, 52–58 (1969–70)Google Scholar
  28. 28.
    Chawla, J.M.: Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kältemitteln. VDI-Forsch, Bd. 523. VDI Verlag, Düsseldorf (1967)Google Scholar
  29. 29.
    Bandel, J.: Druckverlust und Wärmeübergang bei der Verdampfung siedender Kältemittel im durchströmten waagerechten Rohr. Dissertation, University Karlsruhe (1973)Google Scholar
  30. 30.
    Naganagoudar, C.D., Steiner, D.: Einfluß des Massenstroms und des Rohrdurchmessers auf den Druckverlust und Wärmeübergang verdampfender Kältemittel im durchströmten Rohr. Arbeitsgemeinschaft Industrieller Forschungsvereinigungen, AIF-Report No. 20:3531/2 (1977)Google Scholar
  31. 31.
    Iwicki, J., Steiner, D.: Einfluß des Massenstroms und des Rohrdurchmessers auf den Druckverlust und Wärmeübergang verdampfender Kältermittel im durchströmten Rohr-Aufklärung von Widersprüchen zwischen bekannten Berechnungsmethoden und neuen experimentellen Ergebnissen. Arbeitsgemeinschaft Industrieller Forschungsvereinigungen. AIF-Report No. 20:3531/3, Cologne (1979)Google Scholar
  32. 32.
    Müller-Steinhagen, H.: Wärmeübergang und Fouling beim Strömungssieden von Argon und Stickstoff im horizontalen Rohr. Fortschr.-Ber. VDI-Z. Reihe. 6(143), 1–252 (1984)Google Scholar
  33. 33.
    Schmidt, H.: Beitrag zum Verständnis des Wärmeübergangs im horizontalen Verdampferrohr. Fortschr.-Ber. VDI-Z. Reihe. 19(6), 1–161 (1986)Google Scholar
  34. 34.
    Davis, E.J., David, M.M.: Heat transfer to high-quality steam-water mixtures flowing in a horizontal rectangular duct. Can. J. Chem. Eng. 39(3), 99–105 (1961)CrossRefGoogle Scholar
  35. 35.
    Niederkrüger, M.: Strömungssieden von reinen Stoffen und binären zeotropen Gemischen im waagerechten Rohr bei mittleren und hohen Drücken. Fortschr.-Ber. VDI-Z. Reihe 3, 245 (1991)Google Scholar
  36. 36.
    Bryan, W.L., Seigel, L.G.: Heat transfer coefficients in horizontal tube evaporators. Refrig. Eng. 63, 36–45 (1955)Google Scholar
  37. 37.
    Isbin, H.S., Kvamme, A., Yamazaki, Y., et al.: Heat transfer to steam-water flows. In: Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, S. 70–78 (1961)Google Scholar
  38. 38.
    Mumm, JF.: Heat transfer to boiling water forced through a uniformly heated tube. Argonne National Laboratory Report, ANL-5276 (1954)Google Scholar
  39. 39.
    Martin, H.: Published by Bonn, W: Dissertation. University KarIsruhe (cf. [G9]) (1980)Google Scholar
  40. 40.
    Zahn, W.R.: A visual study of two-phase flow while evaporating in horizontal tubes. J. Heat Transf. 86(3), 417–429 (1961)CrossRefGoogle Scholar
  41. 41.
    Niederkrüger, M., Steiner, D., Schlünder, E.-U.: Horizontal flow boiling experiments of saturated pure components and mixtures of R846/R12 at high pressures. Int. J. Refrig. 15(1), 48–58 (1992)CrossRefGoogle Scholar
  42. 42.
    Malek, A.: Influence de la presence d'huile dans le fluide frigorigene sur le transfer de chaleur ä l’evaporation dans un tube horizontal (orig. French). 16th International Congress of Refrigeration. I.I.R. Paris B 1-489, 585/&88 (1983)Google Scholar
  43. 43.
    Hofmann, E.: Efficiency of Dry Expansion Evaporators with Bare and Inside-Finned Tubes. Bulletin de l’Institute International du Froid, Freudenstadt, Annexe-1, 305/18 (1972)Google Scholar
  44. 44.
    Schlünder, E.U., Chawla, J.M.: Örtlicher Wärmeübergang und Druckabfall bei der Strömung verdampfender Kältemittel in innenberippten, waagerechten Rohren. Kältetechnik 21(5), 136–139 (1969)Google Scholar
  45. 45.
    Brendeng, E.: Influence of internal turbulators on heat transfer in evaporator tubes. 16th International Congress of Refrigeration, I.I.R. Paris B.1-459, S. 686–690 (1983)Google Scholar
  46. 46.
    Schael, A.-E., Kind, M.: Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data. Int. J. Refrig. 28, 1186–1195 (2005).  https://doi.org/10.1016/j.ijrefrig.2005.09.002CrossRefGoogle Scholar
  47. 47.
    Schael, A.-E.: Über das Strömungsverdampfen von CO2 im glatten und innen berippten Rohr – Hydrodynamik, Wärmeübergang, Druckverlust.: Karlsruhe, University Dissertation (2008) und Forschungsbericht Nr. 79 des Deutschen Kälte- und Klimatechnischen Vereins (2009)Google Scholar
  48. 48.
    Cavallini, A., Del Col, D., Doretti, L., Longo, G.A., Rossetto, L.: Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. Int. J. Refrig. 23, 4–25 (2000).  https://doi.org/10.1016/S0140-7007(99)00032-8CrossRefGoogle Scholar
  49. 49.
    Kedzierski, M.A., Goncalves, J.M.: Horizontal convective condensation of alternative refrigerants within a micro-fin tube. Enhanc. Heat. Transf. 6, 161–178 (1999)CrossRefGoogle Scholar
  50. 50.
    Geskes, P.: Zweiphasenströmung in Ringkanälen solarer Dampferzeugerrohre. Fortschr. Ber. VDI, Reihe. 7(347), 1–118 (1998)Google Scholar
  51. 51.
    Lis, J., Strickland, J.A.: Local variations of heat transfer in a horizontal steam evaporation tube. Heat Transfer ParisVersailles. V, B 4.6 1–B 4.612 (1970)Google Scholar
  52. 52.
    Cumo, M., Fabrizi, F., Palazzi, G.: The influence of inclination on CHF in steam generators channels. Comitato Nazionale Energia Nucleare, CNEN-Report RT/ING (78) 11 (1978)Google Scholar
  53. 53.
    Kefer, V.: Strömungsformen and Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Dissertation, Tech. University of Munich (1989)Google Scholar
  54. 54.
    Owhadi, A., Bell, K.J., Crain, B.: Forced convection boiling inside helically-coiled tubes. Int. J. Heat Mass Transf. 11, 1179–1193 (1968)CrossRefGoogle Scholar
  55. 55.
    Koumoutsos, N., Moissis, R., Spyridonos, A.: A study of bubble departure in forced-convection boiling. J. Heat Transf. 5, 223–230 (1968)CrossRefGoogle Scholar
  56. 56.
    Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev. 5(3), 322–329 (1966)CrossRefGoogle Scholar
  57. 57.
    Borishanskii, V. M., Novikov, I. I., Kutateladze, B.: Use of thermodynamic similarity in generalizing experimental data of heat transfer. In: Proceedings of the 1961–62 Heat Transfer Conference, Boulder, Aug. 28–Sept. 1, ASME, 475/82 (1961)Google Scholar
  58. 58.
    Hildebrandt, G.: Der Wärmeübergang an siedendes Helium I bei erzwungener Strömung im senkrechten Rohr. Dissertation, Tech. University Berlin (1971)Google Scholar
  59. 59.
    Hildebrandt, U.: Experimentelle Untersuchung des Wärmeübergangs an Helium I bei Blasenverdampfung in einem senkrechten Rohr. Wärme- und Stoffübertragung 4(3), 142–151 (1971)CrossRefGoogle Scholar
  60. 60.
    Johannes, C.: Studies of forced convection heat transfer to helium I. Adv. Cryog. Eng. 17, 352–360 (1972)Google Scholar
  61. 61.
    Keilin, V.E., Kovalev, I.A., Likov, V.V., et al.: Forced convection heat transfer to liquid helium I in the nucleate boiling region. Cryogenics 15(3), 141–145 (1975)CrossRefGoogle Scholar
  62. 62.
    Ogata, H., Sato, S.: Forced convection heat transfer to boiling helium in a tube. Cryogenics 14, 375–380 (1974)CrossRefGoogle Scholar
  63. 63.
    Lewis, J.P., Goodykoontz, P.H., Kline, J.F.: Boiling heat transfer to liquid hydrogen and nitrogen in forced flow. National Aeronautics and Space Administration. NASA Technical Note D-1314 1/56 (1962)Google Scholar
  64. 64.
    Deew, W.U., Archipow, W.W., Nowikow, W.N.: Heat transfer during forced convection boiling of nitrogen (orig. Russ.).Teploenergetika No. 3, 26/29 (1984)Google Scholar
  65. 65.
    Shorin, N., Sukhov, V.I., Shevyakova, A., et al.: Experimental determination of heat boiling of oxygen in vertical tubes and channels (Orig. russ.). Inzh.-fizich. zh. 25 5, 773/ 79 (1973)Google Scholar
  66. 66.
    Wright, C.C., Walters, H.H.: Single tube heat transfer tests gaseous and liquid hydrogen. Wright Air Development Center, WADC Technical Report 59-423 1/46 (1959)Google Scholar
  67. 67.
    Mohr, V.: Verdampfung von Neon in horizontalen Rohren. Dissertation, University Stuttgart (1975)Google Scholar
  68. 68.
    Steiner, D.: Wärmeübergang und Druckverlust von siedendem Stickstoff bei verschiedenen Drücken im waagerecht durchströmten Rohr. Dissertation, University Karlsruhe (1975)Google Scholar
  69. 69.
    Bonn, W.: Wärmeübergang und Druckverlust bei der Verdampfung von Stickstoff und Argon im durchströmten horizontalen Rohr sowie Betrachtungen über die tangentiale Wärmeleitung und die maximal mögliche Flüssigkeitsüberhitzung. Dissertation, University Karlsruhe (1980)Google Scholar
  70. 70.
    Klein, G.: Wärmeübertragung und Druckverlust bei der Strömung von verdampfendem Stickstoff im waagerechten Rohr. Dissertation, Tech. University Aachen (1975)Google Scholar
  71. 71.
    Petukhov, B.S., Zhukov, V.M., Shieldcret, V.M.: Investigation of heat transfer and hydrodynamics in the helium two-phase flow in a vertical channel. In: Heat Exchangers – Theory and Practice, S. 251–262. Hemisphere Publishing Corporation, Washington (1983)Google Scholar
  72. 72.
    Barthau, G.: Experimental investigation of ammonia flow boiling at high pressures (orig. Russ) Fifth All-Union Heat and Mass Transfer Conference, Minsk, Bd. III-1, S. 220–225, and unpublished measurements at the Thermodynamics and Heat Technics Institute of Stuttgart University (1976)Google Scholar
  73. 73.
    Ahrens, K.H., Mayinger, F.: Boiling heat transfer in the transition region from bubble flow to annular flow. In: Proceeding in Two-Phase Energy and Chemical Systems. Int. Centre Heat Mass Transfer ICHMT, Dubrovnik (1978)Google Scholar
  74. 74.
    Haffner, H.: Wärmeübergang an Kältemittel bei Blasenverdampfung, Filmverdampfung und überkritischem Zustand des Fluids. Bundesministerium für Bildung und Wissenschaft, Forschungsber. K 70-24 (1970)Google Scholar
  75. 75.
    Kaufmann, W.D.: Untersuchung des Wärmeübergangs und des Druckverlustes bei der Zweiphasenströmung von R 12 im senkrechten Rohr. Dissertation. Tech. University of Zürich, Diss. No. 5196 (1974)Google Scholar
  76. 76.
    Zuber, N., Staub, F.W., Bijwaard, G. et al.: Steady state and transient void fraction in two-phase flow systems. Final Report for the Programme of Two-Phase Flow Investigation. GEAP-5417, EURAEC-1949, Bd. 1 and Bd. 2 (1967)Google Scholar
  77. 77.
    Herkenrath, H., Mörk-Mörkenstein, P., Jung, U., et al.: Wärmeübergang an Wasser bei erzwungener Strömung im Druckbereich von 140 bis 250 bar. Euratom, Report EUR 3658 d (1967)Google Scholar
  78. 78.
    Morozov, V.G.: Heat transfer during the boiling ofwater in tubes. In: Borishansky, V.M., Paleev, I.I. (Hrsg.) Convective Heat Transfer in Two-Phase and One-Phase Flows. Israel Progr. for Scient. Trans., Jerusalem (1969)Google Scholar
  79. 79.
    Müller, F.: Wärmeübergang bei der Verdampfung unter hohen Drücken. VDI-Forsch., Bd. 522. VDI Verlag, Düsseldorf (1967)Google Scholar
  80. 80.
    Ginoux, J.J.: Two-Phase Flows and Heat Transfer with Application to Nuclear Reactor Design Problems. Hemisphere Pub. Co, Washington (1978)Google Scholar
  81. 81.
    Tong, L.S.: Boiling Heat Transfer and Two-Phase Flow. Wiley, New York (1967)Google Scholar
  82. 82.
    Butterworth, D., Hewitt, G.F.: Two-Phase Flow and Heat Transfer. Oxford University Press, Oxford (1978)Google Scholar
  83. 83.
    Isbin, H.S., Kvamme, A., Yamazaki, Y., et al.: Heat transfer to steam-water flows. In: Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, 7078. I (1961)Google Scholar
  84. 84.
    Collier, J.G., Thome, J.R.: Convective Boiling and Condensation, 3. in paperback, repr. Clarendon Press, Oxford (2001)Google Scholar
  85. 85.
    Shah, M.M.: A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans. 82(2), 66–86 (1976)Google Scholar
  86. 86.
    Bertoletti, S., Lesarge, J., Lombardi, C., et al.: A research program in two-phase flow. Part II. Work on the heat transfer loop. CISE-Report R-36 1/221 (1961)Google Scholar
  87. 87.
    Campolunghi, F., Cumo, M., Ferrari, G., et al.: Boiling heat transfer in L.M.F.B.R. steam generators. Comitato Nazionale Energia Nucleare, CNEN-Report, RT/ING (74) 17 (1974)Google Scholar
  88. 88.
    Herkenrath, H., Mörk-Mörkenstein, P.: Die Wärmeübergangskrise von Wasser bei erzwungener Strömung unter hohen Drücken. Part 1: Darstellung und Vorausbestimmung der kritischen Wärmestromdichte für Drücke von 170 bis 215 bar. Atomkernenergie 14(3), 163–170 (1969). Part 2: Der Wärmeübergang im Bereich der Krise. Atomkernenergie 14, 403–407 (1969)Google Scholar
  89. 89.
    Stephan, K.: Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden. Abh. des Deutschen Kältetechnischen Vereins No. 18, KarIsruhe, Verlag C.F. MüIIer (1964)Google Scholar
  90. 90.
    Takagi, T.: Critical heat flux in horizontal boiling channel. (Orig. Japanese). Dr. Thesis, Osaka University (1967)Google Scholar
  91. 91.
    Wettermann, M.: Wärmeübergang beim Sieden von Gemischen bei Zwangskonvektion im horizontalen Verdampferrohr. Fortschr.-Ber. VDI, Reihe 3 No. 625, (1999)Google Scholar
  92. 92.
    Campolunghi, F., Cumo, M., Palazzi, G., et al.: Subcooled and bulk boiling correlations for thermal design of steam generators. Comitato Nazionale Energia Nucleare, CNEN-Report, RT/ING (77) 10 (1977)Google Scholar
  93. 93.
    Talty, R.D.: A study of heat transfer to organic liquids in natural circulation vertical-tube boilers. Ph. D. Thesis, University Delaware (1953)Google Scholar
  94. 94.
    Shock, R.A.W, Wadekar, V.V., Kenning, D.B.R.: Flow boiling of ethanol and cyclohexane in a vertical tube. In: Proceeding UK-National Heat Transfer Conference, Leeds (1984)Google Scholar
  95. 95.
    Robertson, J.M., Wadekar, V.V.: Vertical upflow boiling of ethanol in a 10 mm diameter tube. 2nd UK Nat. Heat Transfer Conf. I. 198/88, 67–77 (1988)Google Scholar
  96. 96.
    Era, A., Gaspari, G.P., Hassid, A., et al.: Heat transfer data in the liquid-deficient region for steam water mixtures at 70 kg/cm2 flowing in tubular and annular conduits. CISE-Report R-184 (1966)Google Scholar
  97. 97.
    Kattan, N., Thome, J.R., Favrat, D.: Flow Boiling in Horizontal and Vertical Tubes: The Effect of Tube Orientation on Heat Transfer, Eng. Found. Conf., Convective Flow Boiling, Banff, Alberta, Canada 1995, S. 1–6Google Scholar
  98. 98.
    Hahne, E., Shen, N., Spindler, K.: Fully developed nucleate boiling in upflow and downflow. Int. J. Heat Mass Transf. 32, 1799–1808 (1989)CrossRefGoogle Scholar
  99. 99.
    Collier, J.G.: Convective boiling inside horizontal tubes. In: Schlünder, E.U., Bell, K.J., et al. (Hrsg.) HEDH – Heat Exchanger Design Handbook. Hemisphere Publishing Corporation & VDI Verlag, Washington (1983)Google Scholar
  100. 100.
    Butterworth, D.: Air-water annular flow in a horizontal tube. Prog. Heat Mass Transf. 6, 235–251 (1972)Google Scholar
  101. 101.
    Müller-Steinhagen, H.M., Schlünder, E.U.: Über den Einfluß des Wärmeleitvermögens der Rohrwand auf den urnfangsgemittelten Wärmeübergangskoeffizienten beim Sieden im horizontalen Verdampferrohr. Chem. Eng. Process 18, 303–316 (1984)CrossRefGoogle Scholar
  102. 102.
    Johnston, R.C., Chaddock, J.B.: Heat transfer and pressure drop of refrigerants evaporating in horizontal tubes. ASHRAE Trans. 70, 163–171 (1964)Google Scholar
  103. 103.
    Wetzel, M.: Influence of Fully Miscible Lubrication Oil on Flow Boiling of CO2 Inside Horizontal Evaporator Tubes. KIT Scientific Publishing, Karlsruhe (2017).  https://doi.org/10.5445/KSP/1000074487CrossRefGoogle Scholar
  104. 104.
    Bogdanov, V.V.: Investigation of the effect of the rate of motion of the water current on the heat exchange coefficient on boiling in an inclined tube. (orig. Russ.). Izvestiya Akademii Nauk, Otdelenie Tekhnicheskikh Nauk 4, 136–140 and AERE Lib./Trans. 596 (1955)Google Scholar
  105. 105.
    Gilli, P.R.: Forschungen auf dem Gebiet der Filmverdampfung, H. 86, S. 288–300. Mitteilungen der VGB (1963)Google Scholar
  106. 106.
    Carver, J.R., Kakerale, C.R., Slotnik, J.: Heat Transfer in Coiled Tubes With Two-Phase flow. USAEC-Report TID20983 (1964)Google Scholar
  107. 107.
    Gilli, P.V., Edler, A., Halozan, H., et al.: Probleme des Wärrneüberganges, Druckverlustes und der Strömungsstabilität in thermisch hochbeanspruchten Dampferzeugerrohren. VGB Kraftwerkstechnik 55(9), 589–600 (1975)Google Scholar
  108. 108.
    Schaup, P.: Wärmeübergang und Wärmeübergangskrise der Zweiphasenströmung in Schraubenrohren. Dissertation, Tech. University of Graz (1973)Google Scholar
  109. 109.
    Steiner, D., Taborek, J.: Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transf. Eng. 13(2), 43–69 (1992)CrossRefGoogle Scholar
  110. 110.
    Gouse, W., Dickson, A.J.: Heat transfer and fluid flow inside a horizontal tube evaporator: phase H. ASHRAE Trans. 72, 104–114 (1966)Google Scholar
  111. 111.
    Gnielinski, V.: Forced convection in ducts. In: Schlünder, E.U., Bell, K.J., et al. (Hrsg.) HEDH – Heat Exchanger Design Handbook. Hemisphere Publishing Corporation & VDI Verlag, Washington (1983)Google Scholar
  112. 112.
    Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts. Academic Press, New York (1978)Google Scholar
  113. 113.
    Cicchitti, A., Lombardi, C., Silvestri, M., et al.: Two-Phase cooling experiments: Pressure drop, heat transfer and burnout measurements. Energ. Nucl. 7(6), 407–425 (1960)Google Scholar
  114. 114.
    Hein, D., Köhler, W., Krätzer, W.: Experimentelle und analytische Untersuchungen zum Wärmeübergang in Dampferzeugerrohren. Kraftwerk Union AG, Bericht KWU-R513 für Benson-Lizenznehmer. Released for publication by KWU (1979)Google Scholar
  115. 115.
    Gronnerud, R.: Two-Phase Heat Resistance in Boiling Refrigerants – Calculations and Influence on Evaporator Design, S. 1–28. Institutt for Kjøleteknikk, Norges Tekniske Høgskole, Trondheim (1974)Google Scholar
  116. 116.
    Altman, M., Norris, R.H., Staub, F.W.: Local and average heat transfer and pressure drop for refrigerants evaporating in horizontal tubes. J. Heat Transf. Trans. ASME. 82(3), 189–198 (1960)CrossRefGoogle Scholar
  117. 117.
    Djatchkow, F.N., Kalnin, I.M., Krotkow, W.N.: Generalization of experiumental values on heat transfer and hydrodynamics during flow of Freon 22 in inside-finned tubes (orig. Russ.). Cholodilnaja Technika. 7, 22–28 (1977)Google Scholar
  118. 118.
    Kesper, B.: Wandschubspannung und konvektiver Wärmeübergang bei Zweiphasen-Flüssigkeits-Dampfströmung hoher Geschwindigkeit. Dissertation, University Karlsruhe (1974)Google Scholar
  119. 119.
    Lorentzen, G., Gronnerud, R.: Investigation of liquid holdup, flow resistance and heat transfer in an R 12-evaporator coil with recirculation. In: Proceedings of the XIIIth International Congress of Refrigeration, Washington, I.I.F. Annexe 1, 193–203 (1970)Google Scholar
  120. 120.
    Malischev, A.A., Danilowa, G.N., Azarskow, W.M., et al.: Effect of flow pattern on heat transfer during boiling in horizontal tubes (orig. Russ). Cholodilnaja Technika. 8, 30–34 (1982)Google Scholar
  121. 121.
    Pierre, B.: Wärmeübergangszahl bei verdampfendem F 12 in horizontalen Rohren. Kältetechnik 7(6), 163–166 (1955); Heat transfer to boiling F 12 in horizontal tubes (orig. Swed.). Kylteknisk Tidskrift 6, 76–81 (1953)Google Scholar
  122. 122.
    Uchida, H., Yamaguchi, S.: Heat transfer in two-phase flow of refrigerant 12 through horizontal tube. In: Proceeding Third International Heat Transfer Conference, Chicago, Bd. 5, S. 69–79 (1966)Google Scholar
  123. 123.
    Worsøe-Schmidt, P.: Some characteristics of flow pattern and heat transfer of freon 12 evaporating in horizontal tubes. Ingeniøren Int. Ed. 3(3), 98–104 (1959)Google Scholar
  124. 124.
    Jallouk, P.A.: Two-phase flow pressure drop and heat transfer characteristics of refrigerants in vertical tubes. Ph. D. Thesis, University of Tennessee (1974)Google Scholar
  125. 125.
    Calus, W.F., Denning, R.K., di Montegnacco, A., Gadsdon, J.: Heat transfer in a natural circulation single tube reboiler. Part I: Single component. Chem. Eng. 6, 233/50 (1973)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  2. 2.Research Reactor Institute, Department of Nuclear Energy ScienceKyoto UniversityOsakaJapan

Section editors and affiliations

  • Peter Stephan
    • 1
  1. 1.Institut für Technische ThermodynamikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations