Advertisement

Wärmeleitfähigkeit von Schüttschichten

  • Evangelos TsotsasEmail author
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Hornung, U.: Homogenization and Porous Media. Springer, Berlin (1997)CrossRefGoogle Scholar
  2. 2.
    Tsotsas, E., Martin, H.: Thermal conductivity of packed beds: a review. Chem. Eng. Process 22, 19–37 (1987)CrossRefGoogle Scholar
  3. 3.
    Wakao, N., Kato, K.: Effective thermal conductivity of packed beds. J. Chem. Eng. Jpn. 2, 24–33 (1969)CrossRefGoogle Scholar
  4. 4.
    Kohout, M., Collier, A.P., Stepanek, F.: Thermal conductivity of wet particle assemblies. Int. J. Heat Mass Transf. 47, 5565–5574 (2004)CrossRefGoogle Scholar
  5. 5.
    Smith, K.C., Fisher, T.S.: Conduction in jammed systems of tetrahedra. J. Heat Transf. 135, 081301 (2013)CrossRefGoogle Scholar
  6. 6.
    Krischer, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik, 1. Aufl. Springer, Berlin (1956)CrossRefGoogle Scholar
  7. 7.
    Zehner, P., Schlünder, E.-U.: Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen. Chem.Ing.Tech. 42, 933–941 (1970)CrossRefGoogle Scholar
  8. 8.
    Currie, J.A.: Gaseous diffusion in porous media. Br. J. Appl. Phys. 11, 314–324 (1960)CrossRefGoogle Scholar
  9. 9.
    Turner, J.C.R.: Two-phase conductivity: the electrical conductance of liquid-fluidized beds of spheres. Chem. Eng. Sci. 31, 487–492 (1976)CrossRefGoogle Scholar
  10. 10.
    Meredith, R.E., Tobias, C.W.: Conductivities of emulsions. J. Electrochem. Soc. 108, 286–290 (1961)CrossRefGoogle Scholar
  11. 11.
    Zehner, P., Schlünder, E.-U.: Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in nicht durchströmten Schüttungen. Chem.Ing.Tech. 44, 1303–1308 (1972)CrossRefGoogle Scholar
  12. 12.
    Bauer, R., Schlünder, E.-U.: Effective radial thermal conductivity of packings in gas flow. Int. Chem. Eng. 18, 189–204 (1978)Google Scholar
  13. 13.
    Bauer, R.: Effektive radiale Wärmeleitfähigkeit gasdurchströmter Schüttungen mit Partikeln unterschiedlicher Form und Größenverteilung. VDI-Forschungsh, Bd. 582. VDI-Verl., Düsseldorf (1977)Google Scholar
  14. 14.
    Tsotsas, E., Schlünder, E.-U.: The impact of particle size dispersity on the thermal conductivity of packed beds: measurements, numerical simulations, prediction. Chem. Eng. Technol. 14, 421–427 (1991)CrossRefGoogle Scholar
  15. 15.
    Yagi, S., Kunii, D.: Studies of effective thermal conductivity in packed beds. AIChEJ. 3, 373–381 (1957)CrossRefGoogle Scholar
  16. 16.
    Imura, S., Takegoshi, E.: Effect of gas pressure on effective thermal conductivity. Nippon Kikai Gakkai Rombunshu 40, 489–497 (1974)Google Scholar
  17. 17.
    Tsotsas, E., Schlünder, E.-U.: Numerical calculation of the thermal conductivity of two regular bidispersed beds of spherical particles. Comput. Chem. Eng. 14, 1031–1038 (1990)CrossRefGoogle Scholar
  18. 18.
    Bauer, T., Collier, H., Stepanek, F.: A general analytical approach towards the thermal conductivity of porous media. Int. J. Heat Mass Transf. 17, 4181–4191 (1993)CrossRefGoogle Scholar
  19. 19.
    Raghavan, V.R., Martin, H.: Modelling of two-phase thermal conductivity. Chem. Eng. Process 34, 439–446 (1995)CrossRefGoogle Scholar
  20. 20.
    Vortmeyer, D.: Radiation in packed solids. Ger. Chem. Eng. 3, 124–138 (1980)Google Scholar
  21. 21.
    Tien, C.L.: Thermal radiation in packed and fluidized beds. Trans ASME, J Heat Transfer 110, 1230–1242 (1988)CrossRefGoogle Scholar
  22. 22.
    Gross, U., Tran, L.T.S.: Radiation effects on transient hot-wire measurements in absorbing and emitting porous media. Int. J. Heat Mass Transf. 47, 3279–3290 (2004)CrossRefGoogle Scholar
  23. 23.
    Abyzov, A.M., Goryunov, A.V., Shakhov, F.M.: Effective thermal conductivity of disperse materials. II. Effect of external load. Int. J. Heat Mass Transf. 70, 1121–1136 (2014)CrossRefGoogle Scholar
  24. 24.
    Slavin, A.J., Londry, F.A., Harrison, J.: A new model for the effective thermal conductivity of packed beds of solid spheroids. Int. J. Heat Mass Transf. 43, 2059–2073 (2000)CrossRefGoogle Scholar
  25. 25.
    Vargas, W.L., McCarthy, J.J.: Heat conduction in granular materials. AIChE J. 47, 1052–1059 (2001)CrossRefGoogle Scholar
  26. 26.
    Siu, W.W.M., Lee, S.H.K.: Transient temperature computation of spheres in three-dimensional random packings. Int. J. Heat Mass Transf. 47, 887–898 (2004)CrossRefGoogle Scholar
  27. 27.
    Hsu, C.T., Cheng, P., Wong, K.W.: Modified Zehner-Schluender models for stagnant thermal conductivity of porous media. Int. J. Heat Mass Transf. 37, 2751–2759 (1994)CrossRefGoogle Scholar
  28. 28.
    Carson, J.K., Lovatt, S.J., Tanner, D.J., Cleland, A.C.: Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 48, 2150–2158 (2005)CrossRefGoogle Scholar
  29. 29.
    Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)CrossRefGoogle Scholar
  30. 30.
    Yang, X.H., Bai, J.X., Yan, H.B., Kuang, J.J., Lu, T.J., Kim, T.: An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams. Trans Porous. Med. 102, 403–426 (2014)CrossRefGoogle Scholar
  31. 31.
    Yu, G., Gu, D., Dai, D., Xia, M., Ma, C., Shi, Q.: On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. J. Phys. D. Appl. Phys. 49, 135501 (2016)CrossRefGoogle Scholar
  32. 32.
    Botelho, S.J., Banerjee, R., Bazylak, A.: A unit-cell approach for determining the effective thermal conductivity of the polymer electrolyte membrane fuel cell microporous layer. Int. J. Heat Mass Transf. 89, 809–816 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl Thermische VerfahrenstechnikOtto-von-Guericke-Universität MagdeburgMagdeburgDeutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Institut für VerfahrenstechnikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations