Advertisement

Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Sättigung

  • Roland Span
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Ahrendts, J., Baehr, H.D.: Die thermodynamischen Eigenschaften von Ammoniak. VDI-Forschungsheft 596. VDI-Verlag, Düsseldorf (1979)Google Scholar
  2. 2.
    Angus, S., Armstrong, B., De Reuck, K.M.: Chlorine – Tentative Tables. IUPAC Chemical Data Series, No. 31. Pergamon Press, Oxford (1985)Google Scholar
  3. 3.
    Assael, M.J., Ramires, M.L.V., Nietro de Castro, C.A., Wakeham, W.A.: Benzene: a further liquid thermal conductivity standard. J. Phys. Chem. Ref. Data. 19, 113–117 (1990)CrossRefGoogle Scholar
  4. 4.
    Baidakov, V.G., Sulla, I.I.: Surface tension of propane and isobutane at near-critical temperatures. Russ. J. Phys. Chem. 59, 551–554 (1985)Google Scholar
  5. 5.
    Bondi, A.: Estimation of the heat capacity of liquids. Ind. Eng. Chem. Fundam. 5, 442–449 (1966)CrossRefGoogle Scholar
  6. 6.
    Borreson, R.W., Schorr, G.R., Yaws, C.L.: Correlation constants for chemical compounds – heat capacities of gases. Chem. Eng. 16, 79–81 (1976)Google Scholar
  7. 7.
    Brock, J.R., Bird, R.B.: Surface tension and the principle of corresponding states. AIChE J. 1, 174–177 (1955)CrossRefGoogle Scholar
  8. 8.
    Bücker, D., Wagner, W.: A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35, 205–266 (2006)CrossRefGoogle Scholar
  9. 9.
    Bücker, D., Wagner, W.: Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35, 929–1019 (2006)CrossRefGoogle Scholar
  10. 10.
    Calado, J.C.G., McLure, I.A., Soares, V.A.M.: Surface tension for octafluorocyclobutane, n-butane and their mixtures from 233 K to 254 K, and vapour pressure, excess gibbs function and excess volume for the mixture at 233 K. Fluid Phase Equilib. 2, 199–213 (1978)CrossRefGoogle Scholar
  11. 11.
    Carmichael, L.T., Jacobs, J., Sage, B.H.: Thermal conductivity of fluid n-pentane. J. Chem. Eng. Data 14, 31–37 (1969)CrossRefGoogle Scholar
  12. 12.
    Chase, J.D.: Persönliche Mitteilung (1979)Google Scholar
  13. 13.
    Chen, N.H.: Generalized correlation for latent heat of vaporization. J. Chem. Eng. Data 10, 207–210 (1965)CrossRefGoogle Scholar
  14. 14.
    Chung, T.H., Lee, L.L., Starling, K.E.: Ind. Eng. Chem. Fundam. 23, 8 (1984)CrossRefGoogle Scholar
  15. 15.
    Daubert, T.E., Danner, R.P.: Data Compilation Tables of Properties of Pure Components. American Institute of Chemical Engineers, New York (1985)Google Scholar
  16. 16.
    De Reuck, K.M.: International Thermodynamic Tables of the Fluid State-11 Fluorine. International Union of Pure and Applied Chemistry. Pergamon Press, Oxford (1990)Google Scholar
  17. 17.
    Dillon, H.E., Penoncello, S.G.: A fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 25, 321–335 (2004)CrossRefGoogle Scholar
  18. 18.
    Dixon, J.A., Schiesser, R.W.: Viscosities of benzene-d6 and cyclohexane-d12. J. Phys. Chem. 58, 430–432 (1954)CrossRefGoogle Scholar
  19. 19.
    Edminster, W.C.: Applied Hydrocarbon Thermodynamics, Bd. 56. Gulf Publishing, Houston (1961)Google Scholar
  20. 20.
    Elverum, G.W., Doescher, R.N.: Physical properties of liquid fluorine. J. Chem. Phys. 20, 1834–1836 (1952)CrossRefGoogle Scholar
  21. 21.
    Fillipov, L.P., Nefedov, S.N., Kolykalova, E.A.: An experimental investigation into the complex of thermophysical properties of liquids. Inzh.-Fiz. Zh. 38, 644–650 (1980)Google Scholar
  22. 22.
    Friend, D.G., Ingham, H., Ely, J.F.: Thermophysical properties of ethane. J. Phys. Chem. Ref. Data 20, 275–347 (1991)CrossRefGoogle Scholar
  23. 23.
    Gallant, R.W.: Physical Properties of Hydrocarbons, vols. 1 and 2. Gulf Publishing, Houston (1970)Google Scholar
  24. 24.
    Geist, J.M., Cannon, M.R.: Viscosities of pure hydrocarbons. Ind. Eng. Chem. Anal. Ed. 18, 611–613 (1946)CrossRefGoogle Scholar
  25. 25.
    Golubev, I.F.: Viscosity of Gases and Gas Mixtures. Fizmat Press, Moscow (1959)Google Scholar
  26. 26.
    Golubev, I.F., Agaev, N.A.: Viscosity of Limiting Hydrocarbons. Azerbaydzhan State Press, Baku (1964)Google Scholar
  27. 27.
    Gomez-Nieto, M., Thodos, G.: Generalized treatment for the vapour pressure behaviour of polar and hydrogen-bonding compounds. Can. J. Chem. Eng. 55, 445–449 (1977)CrossRefGoogle Scholar
  28. 28.
    Gomez-Nieto, M., Thodos, G.: Generalized vapour pressure equation for nonpolar substances. Ind. Eng. Chem. Fundam. 17, 45–51 (1978)CrossRefGoogle Scholar
  29. 29.
    Goodwin, R.D.: Benzene thermophysical properties from 279 to 900 k at pressures to 1000 bar. J. Phys. Chem. Ref. Data 17, 1541–1635 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gorin, C.E., Yaws, C.L.: correlation constants for chemical compounds – heat of vaporization. Chem. Eng. 83, 85–87 (1976)Google Scholar
  31. 31.
    GPSA Engineering Data Book: Gas Processors Suppliers Association. Tulsa (1977)Google Scholar
  32. 32.
    Gross, U., Song, Y.W., Hahne, E.: Thermal conductivity of the new refrigerants R134a, R152a and R123 measured by the transient hot-wire method. Int. J. Thermophys. 13, 957–983 (1992)CrossRefGoogle Scholar
  33. 33.
    Gunn, R.D., Yamada, T.A.: Corresponding states correlation of saturated liquid volumes. AIChE J. 17, 1341–1345 (1971)CrossRefGoogle Scholar
  34. 34.
    Haynes, W.M.: Measurements of the viscosity of compressed gaseous and liquid fluorine. Physica. 76, 1–20 (1974)CrossRefGoogle Scholar
  35. 35.
    Ho, C.Y.: Data Series on Material Properties, Vol. 5: Properties of Inorganic and Organic Fluids (1988)Google Scholar
  36. 36.
    Holland, P.M., Eaton, B.E., Hanley, H.J.M.: A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene. J. Phys. Chem. Ref. Data 12, 917–932 (1983)CrossRefGoogle Scholar
  37. 37.
    Horvath, A.L.: Physical Properties of Inorganic Compounds SI Units. Crane, Russak & Company, New York (1975)Google Scholar
  38. 38.
    Hu, J.-H., Johnston, H.L., White, D.: The density and surface tension of liquid fluorine between 66 and 80 K. J. Am. Soc. 76, 2584–2586 (1954)CrossRefGoogle Scholar
  39. 39.
    Huber, M.L., Laesecke, A.: Correlation for the viscosity of pentafluoroethane (R125) from the triple point to 500 K at pressures up to 60 MPa. Ind. Eng. Chem. Res. 45, 4447–4453 (2006)CrossRefGoogle Scholar
  40. 40.
    Jasper, J.J.: The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1, 841–1009 (1972)CrossRefGoogle Scholar
  41. 41.
    Johnson, F.M.J., McIntosh, D.: Liquid chlorine. J. Am. Chem. Soc. 31, 1138–1144 (1909)CrossRefGoogle Scholar
  42. 42.
    Jossi, J.A., Stiel, L.I., Thodos, G.: The viscosity of pure substances in the dense gaseous and liquid phases. AIChE J. 8, 59–63 (1962)CrossRefGoogle Scholar
  43. 43.
    Kamei, A., Beyerlein, S.W., Jacobsen, R.T.: Application of nonlinear regression in the development of a wide range formulation for HCFC-22. Int. J. Thermophys. 16, 1155–1164 (1995)CrossRefGoogle Scholar
  44. 44.
    Katti, R.S., Jacobsen, R.T., Stewart, R.B., Jahangiri, M.: Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa. Adv. Cryog. Eng. 31, 1189–1197 (1986)CrossRefGoogle Scholar
  45. 45.
    Klein, S.A., McLinden, M.O., Laesecke, A.: An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrig. 20, 208–217 (1997)CrossRefGoogle Scholar
  46. 46.
    Knappstad, B., Skjolsvik, P.A., Oye, H.A.: Viscosity of pure hydrocarbons. J. Chem. Eng. Data. 34, 37–43 (1989)CrossRefGoogle Scholar
  47. 47.
    Kraus, R., Luettmer-Strahtmann, J., Sengers, J., Stephan, K.: Transport properties of 1,1,1,2-tetrafluorethane (R134a). Int. J. Thermophys. 14, 951–988 (1993)CrossRefGoogle Scholar
  48. 48.
    Kudchadker, A.P., Alani, G.H., Zwolinski, B.J.: Critical constants of organic substances. Chem. Rev. 68, 729–735 (1968)CrossRefGoogle Scholar
  49. 49.
    Kumagi, A., Takahashi, S.: Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K. Int. J. Thermophys. 12, 105–117 (1991)CrossRefGoogle Scholar
  50. 50.
    Latini, G., Laurenti, L., Marcotullio, F., Pierpaoli, P.: Liquid dynamic viscosity: a general method with application to refrigerant and refrigerant mixtures. Int. J. Refrig. 13, 248–255 (1990)CrossRefGoogle Scholar
  51. 51.
    Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38, 721 (2009)CrossRefGoogle Scholar
  52. 52.
    Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21, 510–527 (1975)CrossRefGoogle Scholar
  53. 53.
    Lemmon, E.W.: The Surface Tension of Ethane. Private Communication, NIST, Boulder (2011) – see also Mulero, A., Cachadiña, I., Parra, M.I.: Recommended correlations for the surface tension of common fluids. J. Phys. Chem. Ref. Data 41, 043105 (2012)Google Scholar
  54. 54.
    Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25, 21–69 (2004)CrossRefGoogle Scholar
  55. 55.
    Lemmon, E.W., Jacobsen, R.T.: A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data 34, 69–108 (2005)CrossRefGoogle Scholar
  56. 56.
    Lemmon, E.W., Penoncello, S.G.: Adv. Cryog. Eng. 39, 1927–1934 (1994)CrossRefGoogle Scholar
  57. 57.
    Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (200 The surface tension of air and air component mixtures 6)CrossRefGoogle Scholar
  58. 58.
    Lemmon, E.W., McLinden, M.O., Wagner, W.: Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54, 3141–3180 (2009)CrossRefGoogle Scholar
  59. 59.
    Letsou, A., Stiel, L.I.: Viscosities of saturated nonpolar liquids at elevated pressures. AIChE J. 19, 409–411 (1973)CrossRefGoogle Scholar
  60. 60.
    Liquide, L.: Gas Encyclopaedia. Elsevier, Amsterdam (1976)Google Scholar
  61. 61.
    Livingston, J., Morgan, R., Owen, F.T.: The weight of a falling drop and the laws of tate. J. Am. Chem. Soc. 33, 1713 (1911)CrossRefGoogle Scholar
  62. 62.
    Lydersen, A.L.: Estimation of Critical Properties of Organic Compounds. University of Wisconsin College of Engineering, Madison (1955). Eng. Exp. Stn. Rep. 3Google Scholar
  63. 63.
    Lyman, T.J., Danner, R.P.: Correlation of liquid heat capacities with a four-parameter corresponding states method. AIChE J. 22, 759–765 (1976)CrossRefGoogle Scholar
  64. 64.
    Mamedov, A.M.: Thermal-conductivity of six aromatic hydrocarbons. Inzh.-Fiz. Zh. 34, 465–470 (1978)Google Scholar
  65. 65.
    Marsh, K., Perkins, R., Ramires, M.L.V.: Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 932–940 (2002)CrossRefGoogle Scholar
  66. 66.
    McLinden, M.O., Klein, S.A., Perkins, R.: An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrig. 23, 43–63 (2000)CrossRefGoogle Scholar
  67. 67.
    Miller Jr., J.W., Yaws, C.L.: Correlation constants for liquids – surface tension. Chem. Eng. 83(22), 127–129 (1976)Google Scholar
  68. 68.
    Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for liquids – heat capacities. Chem. Eng. 83(25), 129–131 (1976)Google Scholar
  69. 69.
    Miller Jr., J.W., McGinley, J.J., Yaws, C.L.: Correlation constants for liquids – thermal conductivities. Chem. Eng. 83(25), 133–135 (1976)Google Scholar
  70. 70.
    Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – thermal conductivity of gas. Chem. Eng. 153–155 (1976)Google Scholar
  71. 71.
    Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – gas viscosity. Chem. Eng. 86(24), 155–157 (1976)Google Scholar
  72. 72.
    Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Physical and thermodynamic properties. Correlation constants for chemical compounds – liquid viscosity. Chem. Eng. 86(24), 157–159 (1976)Google Scholar
  73. 73.
    Miller, J.W., Yaws, C.L., Shah, P.N., Schorr, G.R., Patel, P.M.: Physical and thermodynamic properties. 24. Correlation constants for chemical compounds Chem. Eng. 83(25), 153 (1976)Google Scholar
  74. 74.
    Misic, D., Thodos, G.: The thermal conductivity of hydrocarbon gases at normal pressure. AIChE J. 7, 264–267 (1961)CrossRefGoogle Scholar
  75. 75.
    Nabizadeh, H., Mayinger, F.: Viscosity of gaseous R123. High Temp. High Press 24, 221–230 (1992)Google Scholar
  76. 76.
    Needham, D.P., Ziebland, H.: Ammonia and its anomalous behaviour in the vicinity of the critical point. Int. J. Heat Mass Transf. 8, 1387–1411 (1965)CrossRefGoogle Scholar
  77. 77.
    Okada, M., Higashi, Y.: Surface tension correlation of HFC-134a and HCFC-123. Progress Report to IEA Annex 18, Boulder (1994)Google Scholar
  78. 78.
    Okada, M., Higashi, Y.: Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a. Int. J. Thermophys. 16, 791–800 (1995)CrossRefGoogle Scholar
  79. 79.
    Okada, M., Watanabe, K.: Surface tension correlations for several fluorocarbon refrigerants. Heat Transf. Jpn. Res. 17, 35–52 (1988)Google Scholar
  80. 80.
    Okubo, T., Nagashima, A.: Measurement of the viscosity of HCFC-123 in the temperature range 233–418 K and at pressures up to 20 MPa. Int. J. Thermophys. 13, 401–410 (1992)CrossRefGoogle Scholar
  81. 81.
    Overhoff, U.: Development of a new equation of state for the fluid region of propene for temperatures from the melting line to 575 K with pressures to 1000 MPa as well as software for the computation of thermodynamic properties of fluids. Ph.D. Dissertation, Ruhr-University, Bochum (2006)Google Scholar
  82. 82.
    Pennington, R.E., Kobe, K.A.: The thermodynamic properties of acetone. J. Am. Chem. Soc. 79, 300–305 (1957)CrossRefGoogle Scholar
  83. 83.
    Penoncello, S.G., Goodwin, A.R.H., Jacobsen, R.T.: A thermodynamic property formulation for cyclohexane. Int. J. Thermophys. 16, 519–531 (1995)CrossRefGoogle Scholar
  84. 84.
    Perkins, R.A.: Measurement and correlation of the thermal conductivity of isobutane from 114 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1272–1279 (2002)CrossRefGoogle Scholar
  85. 85.
    Perkins, R.A., Huber, M.L.: Measurement and correlation of the thermal conductivity of pentafluoroethane (R125) from 190 K to 512 K at pressures to 70 MPa. J. Chem. Eng. Data 51, 898–904 (2006)CrossRefGoogle Scholar
  86. 86.
    Perkins, R.A., Ramires, M.L.V., Nieto de Castro, C.A., Cusco, L.: Measurement and correlation of the thermal conductivity of butane from 135 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1263–1271 (2002)CrossRefGoogle Scholar
  87. 87.
    Perry, J.H.: Chemical Engineer’s Handbook, 3. Aufl.. McGraw-Hill, New York (1950)Google Scholar
  88. 88.
    Perry, R.H., Chilton, C.H.: Chemical Engineer’s Handbook, 5. Aufl.. McGraw-Hill, New York (1973)Google Scholar
  89. 89.
    Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3. Aufl.. McGraw-Hill, New York (1977)Google Scholar
  90. 90.
    Reuck, K.M., De Craven, R.J.B.: International Tables of the Fluid State, Vol. 12: Methanol. Hemisphere, London (1993)Google Scholar
  91. 91.
    Rihani, D.N., Doraiswamy, L.K.: Estimation of heat capacity of organic compounds from group contributions. Ind. Eng. Chem. Fundam. 4, 17–21 (1965)CrossRefGoogle Scholar
  92. 92.
    Robbins, L.A., Kingrea, C.L.: Estimate thermal conductivity. Hydrocarb. Proc. Pet. Ref. 41(5), 133–136 (1962)Google Scholar
  93. 93.
    Sakiadis, B.C., Coates, J.: Studies in thermal conductivity of liquids. AIChE J. 1, 275–288 (1955)CrossRefGoogle Scholar
  94. 94.
    Sellschopp, W.: Z. Ver. Dt. Ing. 75, 69 (1935)Google Scholar
  95. 95.
    Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20, 1061–1155 (1991)CrossRefGoogle Scholar
  96. 96.
    Shah, P.N., Yaws, C.L.: Densities of liquids. Chem. Eng. 25, 131–133 (1976)Google Scholar
  97. 97.
    Smukala, J., Span, R., Wagner, W.: A new equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29, 1053–1122 (2000)CrossRefGoogle Scholar
  98. 98.
    Soares, V.A.M., Almeida, B.J.V.S., McLure, I.A., Higgins, R.A.: Surface tension of pure and mixed simple substances at low temperature. Fluid Phase Equilib. 32, 9–16 (1986)CrossRefGoogle Scholar
  99. 99.
    Somayajulu, G.R.: A generalized equation for surface tension from the triple point to the critical point. Int. J. Thermophys. 9, 559–566 (1988)CrossRefGoogle Scholar
  100. 100.
    Somayajulu, G.R.: A new equation for enthalpy of vaporization from the triple point to the critical point. Int. J. Thermophys. 9, 567–574 (1988)CrossRefGoogle Scholar
  101. 101.
    Span, R., Wagner, W.: Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24, 41–109 (2003)CrossRefGoogle Scholar
  102. 102.
    Stairs, R.A., Sienko, M.J.: Surface tension of ammonia and of solutions of alkali halides in ammonia. J. Am. Chem. Soc. 78, 920–923 (1956)CrossRefGoogle Scholar
  103. 103.
    Stephan, K., Hildwein, H.: Recommended Data of Selected Compunds and Binary Mixtures. Chemistry Data Series, Bd. 4: Part 1 + 0032. DECHEMA (1987)Google Scholar
  104. 104.
    Stiel, L.I., Thodos, G.: The viscosities of nonpolar gases at normal pressures. AIChE J. 7, 611–615 (1961)CrossRefGoogle Scholar
  105. 105.
    Stiel, L.I., Thodos, G.: The viscosity of polar gases at normal pressures. AIChE J. 8, 229–232 (1962)CrossRefGoogle Scholar
  106. 106.
    Stiel, L.I., Thodos, G.: The viscosity of polar substances in the dense gaseous and liquid regions. AIChE J. 10, 275–277 (1964)CrossRefGoogle Scholar
  107. 107.
    Stiel, L.I., Thodos, G.: The thermal conductivities of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–29 (1964)CrossRefGoogle Scholar
  108. 108.
    Takahashi, M., Yokoyama, C., Takahshi, S.: Viscosities of gaseous R13B1, R142b, and R152a. J. Chem. Eng. Data 32, 98–103 (1987)CrossRefGoogle Scholar
  109. 109.
    Technical Data Book-Petroleum Refining. American Petroleum Institute Division of Refining, Washington, DC (1970)Google Scholar
  110. 110.
    Tegeler, Ch., Span, R., Wagner, W.: A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779–850 (1999)CrossRefGoogle Scholar
  111. 111.
    Thinh, T.P., Duran, J.L., Ramalho, R.S., Kaliaguine, S.: Equations improve Cp° predictions. Hydrocarb. Process. 50, 98–104 (1971)Google Scholar
  112. 112.
    Tillner-Roth, R.: A fundamental equation of state for 1,1-difluorethane (HFC-152a). Int. J. Thermophys. 16, 91–100 (1995)CrossRefGoogle Scholar
  113. 113.
    Tillner-Roth, R., Baehr, H.D.: An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluorethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23, 657–729 (1994)CrossRefGoogle Scholar
  114. 114.
    Tillner-Roth, R., Harms-Watzenberg, F., Baehr, H.D.: Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20, 167–181 (1993)Google Scholar
  115. 115.
    Timmermans, J.: Physico-Chemical Constants of Pure Organic Compounds, S. 303–325. Elsevier, New York (1950)Google Scholar
  116. 116.
    Touloukian, Y.S., Makitu, T.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)Google Scholar
  117. 117.
    Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 3. IFI/Plenum, New York (1970)Google Scholar
  118. 118.
    Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter, Bd. 1. IFI/Plenum, New York (1970)Google Scholar
  119. 119.
    Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)Google Scholar
  120. 120.
    Touloukian, Y.S., Liley, P.E., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, New York (1975)Google Scholar
  121. 121.
    Touloukian, Y.S., Saxena, S.C., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, NewYork (1975)Google Scholar
  122. 122.
    Tsvetkov, O.B., Laptev, Yu.A., Asambaev, A.G.: Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. Int. J. Thermophys. 15, 203–214 (1994)CrossRefGoogle Scholar
  123. 123.
    Tufeu, R., Clifford, A.A.: Thermal conductivity of gaseous and liquid ammonia. J. Heat Transf. 110, 992–993 (1988)CrossRefGoogle Scholar
  124. 124.
    Van der Gulik, P.S.: The viscosity of the refrigerant 1,1-difluoroethane along the saturation line. Int. J. Thermophys. 12, 105–117 (1993)Google Scholar
  125. 125.
    Vargaftik, N.B.: Tables on the Thermophysical Properties of Liquids and Gases, 2. Aufl.. Hemisphere Publishing, Washington, DC (1975)Google Scholar
  126. 126.
    Velzen, D., Van Cardozo, R.L., Langenkamp, H.: A liquid viscosity temperature chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11, 20–25 (1972)CrossRefGoogle Scholar
  127. 127.
    Vines, R.G., Bennett, L.A.: The thermal conductivity of organic vapors. The relationship between thermal conductivity and viscosity, and the significance of the euken faktor. J. Chem. Phys. 22, 360–366 (1954)CrossRefGoogle Scholar
  128. 128.
    Vogel, E., Kuechenmeister, C., Bich, E., Laesecke, A.: Reference correlation of the viscosity of propane. J. Phys. Chem. Ref. Data 27, 947–970 (1998)CrossRefGoogle Scholar
  129. 129.
    Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity for n-butane in the fluid region. High Temp. High Press 31, 173–186 (1999)Google Scholar
  130. 130.
    Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity correlation for isobutane over wide ranges of the fluid region. Int. J. Thermophys. 21, 343–356 (2000)CrossRefGoogle Scholar
  131. 131.
    Wakeham, W.A., Fenghour, A.: The viscosity of ammonia, persönliche Mitteilung. (Artikel im Druck bei J. Phys. Chem. Ref. Data.) (1995)Google Scholar
  132. 132.
    Watson, K.M.: Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398–400 (1943)CrossRefGoogle Scholar
  133. 133.
    Yamamoto, R., Matsuo, S., Tanaka, Y.: Thermal conductivity of halogenated ethanes HFC-134a, HFC-123 and HCFC-141b. Int. J. Thermophys. 14, 79–90 (1992)CrossRefGoogle Scholar
  134. 134.
    Yaws, C.L.: Calculate liquid heat capacity. Hydrocarb. Process. 73–77 (1991)Google Scholar
  135. 135.
    Yoor, P., Thodos, G.: Viscosity of nonpolar gaseous mixtures at normal pressures. AIChE J. 16, 300–304 (1970)CrossRefGoogle Scholar
  136. 136.
    Younglove, B.A., McLinden, M.O.: An international standard equation of state for the thermodynamic properties of refrigerant 123. J. Phys. Chem. Ref. Data 23, 731–779 (1994)CrossRefGoogle Scholar
  137. 137.
    Yuan, T.F., Stiel, L.I.: Heat capacity of saturated nonpolar and polar liquids. Ind. Eng. Chem. Fundam. 9, 393–400 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für Maschinenbau | Lehrstuhl für ThermodynamikRuhr-Universität BochumBochumDeutschland

Section editors and affiliations

  • Karlheinz Schaber
    • 1
  1. 1.Institut für Technische Thermodynamik und Kältetechnik ITTKKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Personalised recommendations