Advertisement

Kühltürme

  • Paul J. Erens
  • Hanno C ReuterEmail author
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

Zeitschriftenbeiträge

  1. 1.
    Baker, D.R., Shryock, H.A.: A comprehensive approach to the analysis of cooling tower performance. J. Heat Transf. 8, 339–350 (1961)CrossRefGoogle Scholar
  2. 2.
    Chan, J., Golay, W.: Comparative performance evaluation of current design evaporative cooling tower drift eliminators. Environment 11, 775–781 (1977)Google Scholar
  3. 3.
    De Villiers, E., Kröger, D.G.: Analysis of heat, mass and momentum transfer in the rain zone of counterflow cooling towers. Transactions of the ASME. J. Eng. Gas Turbines Power 121(4), 751–755 (1999)CrossRefGoogle Scholar
  4. 4.
    Erens, P.J.: A procedure for the design or rating of counterflow evaporative cooler cores. SAIMechE R+D, J. 3(1), 18–25 (1987)Google Scholar
  5. 5.
    Erens, P.J.: Comparison of some design choices for evaporative cooler cores. Heat Transfer Eng. 9(2) (1988)CrossRefGoogle Scholar
  6. 6.
    Erens, P.J, Dreyer, A.A.: An Improved Procedure for calculating the performance of evaporative closed circuit coolers. 25th National Heat Transfer Conference, AIChE Symposium Series No 263, Bd. 84, Houston, Texas (1988)Google Scholar
  7. 7.
    Erens, P.J., Dreyer, A.A.: A general approach for the rating of evaporative closed circuit coolers. R&D J. SAIMechE R&D J. 5(1), 1–10 (1989)Google Scholar
  8. 8.
    Finlay, I.C., Grant, W.D.: Thermal design of evaporative coolers. Natl. Eng. Lab. 12, 15–46 (1972)Google Scholar
  9. 9.
    Foster, P.M., Williams, M.I., Winter, R.J.: Droplet behaviour and collection by counterflow cooling tower eliminators. Environment 8, 349–360 (1974)Google Scholar
  10. 10.
    Fujita, T., Tezuka, S.: Calculations on thermal performance of mechanical draft cooling towers. ASHRAE Trans., 92(1A), 274–287 (1986)Google Scholar
  11. 11.
    Golay, M.W., Glantschnig, W.J., Best, F.R.: Comparison of methods for measurement of cooling tower drift. Atmos. Environ. 20(2), 269–291 (1986)CrossRefGoogle Scholar
  12. 12.
    Jaber, H., Webb, R.L.: Design of cooling towers by the effectiveness-NTU method. J. Heat Transf. 111, 837–843 (1989)CrossRefGoogle Scholar
  13. 13.
    Kloppers, J.C., Kröger, D.G.: Loss coefficient correlation for wet cooling tower fills. Appl. Therm. Eng. 23(17), 2201–2211 (2003)CrossRefGoogle Scholar
  14. 14.
    Kloppers, J.C., Kröger, D.G.: Cooling tower performance, a critical evaluation of Merkel assumptions. R&D J. SAIMechE. 20(1), 6–10 (2003)Google Scholar
  15. 15.
    Kloppers, J.C., Kröger, D.G.: Cost optimization of cooling tower geometry. Eng. Optim. 36(5), 575–584 (2004)CrossRefGoogle Scholar
  16. 16.
    Kloppers, J.C., Kröger, D.G.: A critical investigation into the heat and mass transfer analysis of crossflow wet cooling towers. Numer. Heat Transfer: Part A Appl. 46(8), 785–806 (2004)CrossRefGoogle Scholar
  17. 17.
    Kloppers, J.C., Kröger, D.G.: Cooling tower performance evaluation – Merkel, Poppe, and e-NTU methods of analysis. J. Eng. Gas Turbines Power 127(1), 1–7 (2005)CrossRefGoogle Scholar
  18. 18.
    Kloppers, J.C., Kröger, D.G.: The Lewis factor and it’s influence on the performance predicition of wet cooling towers. Int J. Therm. Sci. 44, 879–884 (2005)CrossRefGoogle Scholar
  19. 19.
    Kloppers, J.C., Kröger, D.G.: A critical investigation into the heat and mass transfer analysis of counterflow wet cooling towers. Int J. Heat Mass Transf. 48(3–4), 765–777 (2005)CrossRefGoogle Scholar
  20. 20.
    Kloppers, J.C., Kröger, D.G.: Refinement of the transfer coefficient correlation of wet cooling tower fills. Heat Transfer Eng. 26(4), 35–41 (2005)CrossRefGoogle Scholar
  21. 21.
    Leidenfrost, W., Korenic, B.: Evaporative cooling and heat transfer augmentation related to reduced condenser temperature. Heat Transfer Eng., 3(3–4), 38–59 (1982)CrossRefGoogle Scholar
  22. 22.
    Majumdar, A.K., Singhal, A.K., Spalding, D.B.: Numerical modelling of wet cooling towers. Trans. ASME J. Heat Transfer 105, 728–743 (1983)CrossRefGoogle Scholar
  23. 23.
    Majumdar, A.K., Singhal, A.K., Mukerjee, T.: VERA2D-84.A Computer Program for Two-Dimensional Analysis of Flow,Heat and Mass Transfer in Evaporative Cooling Towers. Report CS-4073, Bd. 1 & 2. Electric Power Research Institute, Palo Alto (1985)Google Scholar
  24. 24.
    Merkel, F.: Verdunstungskühlung. VDI-Zeitschrift 70(4), 123–128 (1926)Google Scholar
  25. 25.
    Mizushina, T.: Design of cooler condensers and evaporative coolers. Afghan and Schlunderer. Heat Transfer: Design Source Book, S. 419–440Google Scholar
  26. 26.
    Nestor, G.J., Cappeline, G.A.: Water related problems of evaporative cooling systems and control methods. Ind. Water Eng. 16(3), 14–25 (1979)Google Scholar
  27. 27.
    Parker, R.O., Treybal, R.E.: The heat,mass transfer characteristics of evaporative coolers. Chem. Eng. Prog. Sym. Ser. Heat Transfer 57(32), 138–149 (1961)Google Scholar
  28. 28.
    Pierce, D.J.: Evaluation und performance prediction of cooling tower rain zones. M.Sc.(Eng) Thesis, Stellenbosch Universität, Stelenbosch, Südafrika (2007)Google Scholar
  29. 29.
    Sutherland, J.W.: Analysis of mechanical draught counterflow air/water cooling towers. J. Heat Transf. 8, 576–583 (1983)CrossRefGoogle Scholar
  30. 30.
    Terblanche, R., Reuter, H.C.R., Kröger, D.G.: Drop size distribution below different wet-cooling tower fills. Appl. Therm. Eng. (2008).  https://doi.org/10.1016/j.applthermaleng.2008.07.013CrossRefGoogle Scholar
  31. 31.
    Webb, R.L.: A unified theoretical treatment for thermal analysis of cooling tower evaporative condensers and fluid coolers. ASHRAE Publication KC-84-07, 3(RP-322), S. 398–415 (1984)Google Scholar
  32. 32.
    Webb, R.L.: A critical evaluation of cooling tower design methodology, S. 547–558 (1988)Google Scholar
  33. 33.
    Webb, R.L., Jaber, H.: Design of cooling towers by the effectiveness-NTU method. J. Heat Transf. 11, 837–843 (1989)Google Scholar
  34. 34.
    Webb, R.L., Villacres, A.: Cooling tower performance. ASHRAE J. 26(11), 34–40 (1984)Google Scholar
  35. 35.
    Webb, R.L., Villacres, A.: Algorithms for performance simulation of cooling towers, Evaporative condensers and fluid coolers, S. 416–458 (1984)Google Scholar
  36. 36.
    Webb, R.L., Villacres, A.: Performance simulations of evaporative heat exchangers (cooling towers, fluid coolers and condensers). Heat Transfer Eng. 6(2), 31–38 (1985)CrossRefGoogle Scholar
  37. 37.
    Wirth, J.R., Westbrook, G.: Cooling water salinity and brine disposal optimized with electrodialysis water recovery/brine concentration system. Combustion 48(11), 33–37 (1977)Google Scholar
  38. 38.
    Yadigaroglu, G., Pastor, E.J.: An investigation of the accuracy of the Merkel Eq. for evaporative cooling tower calculations. ASME paper no. 74-HT-59, Bd. 7, S. 15–17 Boston (1974)Google Scholar

Beitragswerke

  1. 39.
    British Standard 4485: Part 2 2–24 (1988)Google Scholar
  2. 40.
    British Standard 4485: Part 3, S. 1–32 (1988)Google Scholar
  3. 41.
    Cooling Tower Institute: Acceptance Test Code for Water Cooling Towers, S. 1–50 (1990)Google Scholar
  4. 42.
    Cooling Tower Institute: Recommended Practice for Airflow Testing of Cooling Towers, Bd. 6, S. 1–6. Cooling Tower Institute, Houston (1994)Google Scholar
  5. 43.
    Cooling Tower Institute: Bibliography of Technical papers, S. 3–23. Cooling Tower Institute, Houston (1996)Google Scholar
  6. 44.
    Cooling Tower Institute: Acceptance Test Code for Water Cooling Towers, S. 1–15. Cooling Tower Institute, Houston (2000)Google Scholar
  7. 45.
    Cooling Tower Institute: Standard for Water Flow Measurement, Part 1 and 2, Bd. 7, S. 1–16. Cooling Tower Institute, Houston (2008)Google Scholar
  8. 46.
    Cooling Tower Institute: Acceptance Test Code for Closed Circuit Cooling Towers, Bd. 7, S. 1–19. Cooling Tower Institute, Houston (2011)Google Scholar
  9. 47.
    Deutsche Normen 1947: Performance Test on Cooling Towers, Bd. 6, S. 2–28. Cooling Tower Institute, Houston (1959)Google Scholar
  10. 48.
    Dreyer, A.A.: Modelling of cooling tower splashpack. Ph.D. Thesis, Stellenbosch Universität, Stellenbosch, Südafrika (1994)Google Scholar
  11. 49.
    Monjoie, M., Lauraine, H.: Cooling Tower Drift Losses, S. 1–8. Hamon Sobelco Internal Publication, Brüssel, Belgien (1985)Google Scholar
  12. 50.
    Poppe, M., Rögener, H.: Berechnung von Rückkühlwerken, 10. Aufl. VDI-Wärmeatlas, Springer Verlag, Deutschland (2006)Google Scholar

Monographien

  1. 51.
    Bosnjakovic, F.: Technical Thermodynamics (English version). Holt,Rinehart & Winston, New York, U.S.A. (1965)Google Scholar
  2. 52.
    Burger, R.: Cooling Tower Technology, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co, (2000)  https://doi.org/10.1002/14356007.b03_17
  3. 53.
    Cale, S.A.: Development of evaporative cooling packing commission of the E.C. (1982) https://publications.europa.eu/en/publication-detail/-/publication/822ee927-28de-440b-8c2e-46cd31ae8db9
  4. 54.
    Gurney, J.D., Cotter, I.A.: Cooling Towers, S. 12–37. McClaren & Sons Ltd, London (1966)Google Scholar
  5. 55.
    Kröger, D.G.: Air-Cooled Heat Exchangers and Cooling Towers. Penwell Corporation, Oklahoma (2004)Google Scholar
  6. 56.
    Reuter, H.C.R.: Performance evaluation of natural draught cooling towers with anisotropic fills. PhD thesis. https://scholar.sun.ac.za/handle/10019.1/780. Stellenbosch Universität, Südafrika (2010)
  7. 57.
    Singham, J.R.: Chapter 3.12 Cooling Towers. Heat Exchange Design Handbook, (1983)Google Scholar
  8. 58.
    Stoecker, W.F., Jones, J.W.: Refrigeration and Air Conditioning, S. 40–57. McGraw Hill (1982). 365–379Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronic EngineeringStellenbosch UniversityStellenboschSouth Africa
  2. 2.Hamon Thermal Europe S.A.Mont-Saint-GuibertBelgien
  3. 3.StellenboschSouth Africa

Section editors and affiliations

  • Matthias Kind
    • 1
  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Personalised recommendations