Advertisement

Oxygen Impurity in Crystalline Silicon

  • G. KissingerEmail author
Living reference work entry

Abstract

Oxygen belongs to the most important impurities in many types of solar silicon. Interstitial oxygen is already incorporated in a supersaturated state during crystal growth. Subsequent thermal treatment during solar cell manufacturing leads to its precipitation which degrades the lifetime of minority carriers in solar cell material and also the solar cell efficiency. Oxide precipitate nuclei are formed already during crystal cooling. A special form of oxygen precipitation is the generation of thermal donors which enhance the free carrier concentration and in this way degrade the lifetime of minority carriers. Controlling of oxygen precipitation for optimization of solar cell efficiency involves controlling of all important factors affecting the nucleation and growth of oxygen-related defects. Therefore, this chapter deals with the basic understanding of oxygen precipitation and thermal donor formation, its characterization and measurement, and its impact on solar cell material and solar cell performance. The interaction of intrinsic point defects, light elements, and dopants with oxygen and its impact on precipitation is also discussed.

Keywords

Czochralski silicon Multi-crystalline silicon Interstitial oxygen Vacancy Self-interstitial Oxide precipitate Thermal donor Lifetime Nucleation 

References

  1. D. Ǻberg, B.G. Svensson, T. Hallberg, J.L. Lindström, Phys. Rev. B 58, 12944 (1998)CrossRefGoogle Scholar
  2. V. Akhmetov, G. Kissinger, W. von Ammon, Appl. Phys. Lett. 94, 092105 (2009)CrossRefGoogle Scholar
  3. L. Arnberg, M. Di Sabatino, E.J. Øvrelid, J. Cryst. Growth 360, 56 (2012)CrossRefGoogle Scholar
  4. R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)CrossRefGoogle Scholar
  5. J.L. Benton, L.C. Kimerling, M. Stavola, Phy. B 116, 271 (1983)CrossRefGoogle Scholar
  6. S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini, A. Cavallini, J. Appl. Phys. 92, 2437 (2002)CrossRefGoogle Scholar
  7. S. Binetti, A. Le Donne, A. Sassella, Sol. Energy Mater. Sol. Cells 130, 696 (2014)CrossRefGoogle Scholar
  8. A. Borghesi, A. Piaggi, A. Sassella, A. Stella, B. Pivac, Phys. Rev. B 46, 4123 (1992)CrossRefGoogle Scholar
  9. A. Borghesi, B. Pivac, A. Sassella, A. Stella, J. Appl. Phys. 77, 4169 (1995)CrossRefGoogle Scholar
  10. A. Borghesi, A. Sassela, P. Geranzani, M. Porrini, B. Pivac, Mater. Sci. Eng. B 73, 145 (2000)CrossRefGoogle Scholar
  11. S. Cadeo, S. Pizzini, M. Acciarri, A. Cavallini, Mat. Sci. Semicond. Proc. 2, 57 (1999)CrossRefGoogle Scholar
  12. V. Cazcarra, P. Zunino, J. Appl. Phys. 51, 4206 (1980)CrossRefGoogle Scholar
  13. L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, D. Yang, Sol. Energy Mater. Sol. Cells 95, 3148 (2011)CrossRefGoogle Scholar
  14. M. Claybourn, R.C. Newman, Appl. Phys. Lett. 52, 2139 (1988)CrossRefGoogle Scholar
  15. J. Coutinho, R. Jones, L.I. Murin, V.P. Markevich, J.L. Lindström, S. Öberg, P.R. Briddon, Phys. Rev. Lett. 87, 235501 (2001)CrossRefGoogle Scholar
  16. R. Falster, M. Cornara, D. Gambaro, M. Olmo, M. Pagani, Solid State Phenom. 57–58, 123 (1997a)CrossRefGoogle Scholar
  17. R. Falster, M. Pagani, D. Gambaro, M. Cornara, M. Olmo, G. Ferrero, P. Pichler, M. Jacob, Solid State Phenom. 57–58, 129 (1997b)CrossRefGoogle Scholar
  18. C.S. Fuller, R.A. Logan, J. Appl. Phys. 28, 1427 (1957)CrossRefGoogle Scholar
  19. J. Furukawa, H. Furuya, Jpn. J. Appl. Phys. 34, L156 (1995)CrossRefGoogle Scholar
  20. G. Gaspar, G. Coletti, M. Juel, S. Würzner, R. Søndenå, M. Di Sabatino, L. Arnberg, E.J. Øvrelid, Sol. Energy Mater. Sol. Cells 153, 31 (2016)CrossRefGoogle Scholar
  21. W. Götz, G. Pensl, W. Zulehner, Phys. Rev. B 46, 4312 (1992)CrossRefGoogle Scholar
  22. T. Hallberg, J.L. Lindström, J. Appl. Phys. 72, 5130 (1992)CrossRefGoogle Scholar
  23. C. Häßler, H.-U. Höfs, W. Koch, G. Stollwerck, A. Müller, D. Karg, G. Pensl, Mat. Sci. Eng. B71, 39 (2000)CrossRefGoogle Scholar
  24. S.M. Hu, J. Appl. Phys. 51, 5945 (1980)CrossRefGoogle Scholar
  25. Y. Hu, H. Schøn, E.J. Øvrelid, Ø. Nielsen, L. Arnberg, AIP Adv. 2, 032169 (2012)CrossRefGoogle Scholar
  26. J.M. Hwang, D. Schroder, J. Appl. Phys. 59, 2476 (1986)CrossRefGoogle Scholar
  27. K. Kaneko, K. Nakagawa, T. Onizuka, K. Sasatani, N. Kubo, M. Kida, in Proc. 16th Workshop on Crystalline Silicon Solar Cells and Modules, ed. by B. L. Sopori, NREL, (Denver, 2006), p. 2Google Scholar
  28. D. Karg, G. Pensl, M. Schulz, C. Hässler, W. Koch, Phys. Stat. Sol. (B) 222, 379 (2000)CrossRefGoogle Scholar
  29. D. Karg, G. Pensl, M. Schulz, in Proc. 3rd World Conf. on Photovoltaic Energy Conversion, WCPEC-3 Organizing Committee, (Osaka, 2003), p. 1112–1115Google Scholar
  30. D. Karg, H. Charifi, G. Pensl, M. Schulz, G. Hahn, in 19th Europ. Photovoltaic Solar Energy Conf.: Proc. of the Int. Conf. held in Paris, France, June 7–11 2004, vol 1, ed. by H. Winfried (WIP, München [u.a.], 2004), pp. 709–712. ISBN 3-936338-14-0Google Scholar
  31. G. Kato, M. Tajima, F. Okayama, S. Tokumaru, R. Sato, H. Toyota, A. Ogura, Acta Phys. Pol. A 125, 1010 (2014)CrossRefGoogle Scholar
  32. K.F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, P.F. Wei, J. Appl. Phys. 85, 8097 (1999)CrossRefGoogle Scholar
  33. K. Kinoshita, T. Kojima, K. Onishi, Y. Ohshita, A. Ogura, Jpn. J. Appl. Phys. 58, SBBF02 (2019)CrossRefGoogle Scholar
  34. G. Kissinger, in Defects and Impurities in Silicon Materials, Lecture Notes in Physics, ed. by Y. Yoshida, G. Langouche, vol. 916, (Springer, Japan, 2015), pp. 273–341CrossRefGoogle Scholar
  35. G. Kissinger, J. Dabrowski, J. Electrochem. Soc. 155, H448 (2008)CrossRefGoogle Scholar
  36. G. Kissinger, D. Gräf, U. Lambert, H. Richter, J. Electrochem. Soc. 144, 1447 (1997)CrossRefGoogle Scholar
  37. G. Kissinger, J. Dabrowski, A. Sattler, C. Seuring, T. Müller, H. Richter, W. von Ammon, J. Electrochem. Soc. 154, H454 (2007)CrossRefGoogle Scholar
  38. G. Kissinger, D. Kot, J. Dabrowski, V. Akhmetov, A. Sattler, W. von Ammon, ECS Trans. 16(6), 97 (2008a)CrossRefGoogle Scholar
  39. G. Kissinger, J. Dabrowski, A. Sattler, T. Müller, W. von Ammon, Solid State Phenom. 131–133, 293 (2008b)Google Scholar
  40. G. Kissinger, J. Dabrowski, V. Akhmetov, A. Sattler, D. Kot, W. von Ammon, Solis State Phenom. 156–158, 211 (2010)Google Scholar
  41. G. Kissinger, J. Dabrowski, D. Kot, V. Akhmetov, A. Sattler, W. von Ammon, J. Electrochem. Soc. 158, H343 (2011)CrossRefGoogle Scholar
  42. G. Kissinger, D. Kot, J. Dabrowski, T. Grabolla, T. Müller, A. Sattler, Phys. Status Solidi A 214, 1700236 (2017)CrossRefGoogle Scholar
  43. D. Kot, T. Mchedlidze, G. Kissinger, W. von Ammon, ECS J. Solid State Sci. Technol. 2, P9 (2013)CrossRefGoogle Scholar
  44. D. Kot, G. Kissinger, M.A. Schubert, A. Sattler, ECS J. Solid State Sci. Technol. 3(11), P370 (2014)CrossRefGoogle Scholar
  45. D. Kot, G. Kissinger, M.A. Schubert, S. Marschmeyer, G. Schwalb, A. Sattler, Phys. Stat. Sol. (C) 14, 1700161 (2017)Google Scholar
  46. D. Kot, G. Kissinger, J. Dabrowski, A. Sattler, ECS J. Solid State Sci. Technol. 7, P707 (2018)CrossRefGoogle Scholar
  47. F. Kroupa, Czechoslov. J. Phys. 10B, 284 (1960)CrossRefGoogle Scholar
  48. A. Le Donne, S. Binetti, V. Folegatti, G. Coletti, Appl. Phys. Lett. 109, 033907 (2016)CrossRefGoogle Scholar
  49. S.-T. Lee, P. Fellinger, S. Chen, J. Appl. Phys. 63, 1924 (1988)CrossRefGoogle Scholar
  50. J. Lu, G. Rozgonyi, J. Rand, R. Jonczyk, J. Cryst. Growth 269, 599 (2004)CrossRefGoogle Scholar
  51. V.P. Markevich, M. Vaqueiro-Contreras, S.B. Lastovskii, L.I. Murin, M.P. Halsall, A.R. Peaker, J. Appl. Phys. 124, 225703 (2018)CrossRefGoogle Scholar
  52. S.A. McQuaid, B.K. Johnson, D. Gambaro, R. Falster, M.J. Ashwin, J.H. Tucker, J. Appl. Phys. 86, 1878 (1999)CrossRefGoogle Scholar
  53. J.C. Mikkelsen Jr., Mater. Res. Soc. Symp. Proc. 59, 19 (1986)CrossRefGoogle Scholar
  54. M. Miyagi, K. Wada, J. Osaka, N. Inoue, Appl. Phys. Lett. 40, 719 (1982)CrossRefGoogle Scholar
  55. Y. Miyamura, H. Harada, K. Jiptner, S. Nakano, B. Gao, K. Kakimoto, K. Nakamura, Y. Ohshita, A. Ogura, S. Sugawara, T. Sekiguchi, Appl. Phys. Express 8, 062301 (2015)CrossRefGoogle Scholar
  56. Y. Miyamura, H. Harada, S. Nakano, S. Nishizawa, K. Kakimoto, J. Cryst. Growth 489, 1 (2018)CrossRefGoogle Scholar
  57. H.J. Möller, L. Long, M. Werner, D. Yang, Phys. Stat. Sol. (A) 171, 175 (1999)CrossRefGoogle Scholar
  58. P.M. Mooney, L.J. Cheng, M. Süli, J.D. Gerson, J.W. Corbett, Phys. Rev. B 15, 3836 (1977)CrossRefGoogle Scholar
  59. Y. Murakami, Y. Satoh, H. Furuja, T. Shingyouji, J. Appl. Phys. 84, 3175 (1998)CrossRefGoogle Scholar
  60. L.I. Murin, J.L. Lindström, B.G. Svensson, V.P. Markevich, A.R. Peaker, C.A. Londos, Solid State Phenom. 108–109, 267 (2005)CrossRefGoogle Scholar
  61. J.D. Murphy, P.R. Wilshaw, B.C. Pygall, S. Senkader, J. Appl. Phys. 100, 103531 (2006)CrossRefGoogle Scholar
  62. J.D. Murphy, K. Bothe, M. Olmo, V.V. Voronkov, R.J. Falster, J. Appl. Phys. 110, 053713 (2011)CrossRefGoogle Scholar
  63. J.D. Murphy, K. Bothe, V.V. Voronkov, R.J. Falster, Appl. Phys. Lett. 102, 042105 (2013)CrossRefGoogle Scholar
  64. J.D. Murphy, R.E. McGuire, K. Bothe, V.V. Voronkov, R.J. Falster, Sol. Energy Mater. Sol. Cells 120, 402 (2014)CrossRefGoogle Scholar
  65. J.D. Murphy, M. Al-Amin, K. Bothe, M. Olmo, V.V. Voronkov, R.J. Falster, J. Appl. Phys. 118, 215706 (2015)CrossRefGoogle Scholar
  66. F.R.N. Nabarro, H.H. Wills, Proc. Roy. Soc. A 175, 519 (1940)Google Scholar
  67. K. Nakai, Y. Inoue, H. Yokota, A. Ikari, J. Takahashi, A. Tachikawa, K. Kitahara, Y. Ohta, W. Ohashi, J. Appl. Phys. 89, 4301 (2001)CrossRefGoogle Scholar
  68. R.C. Newman, J.H. Tucker, A.R. Brown, S.A. McQuaid, J. Appl. Phys. 70, 3061 (1991)CrossRefGoogle Scholar
  69. H. Ono, T. Ishizuka, C. Kato, K. Arafune, Y. Ohshita, A. Ogura, Jpn. J. Appl. Phys. 49, 110202 (2010)CrossRefGoogle Scholar
  70. G. Pensl, M. Schulz, K. Hölzlein, W. Bergholz, J.L. Hutchison, Appl. Phys. A 48, 49 (1989)CrossRefGoogle Scholar
  71. M. Pesola, Y.J. Lee, J. von Boehm, M. Kaukonen, R.M. Nieminen, Phys. Rev. Lett. 84, 5343 (2000)CrossRefGoogle Scholar
  72. B. Pivac, A. Sassella, A. Borghesi, Mater. Sci. Eng. B 36, 53 (1996)CrossRefGoogle Scholar
  73. S. Pizzini, M. Acciarri, E. Leoni, A. Le Donne, Phys. Stat. Sol. (B) 222, 141 (2000)CrossRefGoogle Scholar
  74. V. Quemener, B. Raeissi, F. Herklotz, L.I. Murin, E.V. Monakhov, B.G. Svensson, Phys. Stat. Sol. B 251, 2197 (2014)CrossRefGoogle Scholar
  75. V. Quemener, B. Raeissi, F. Herklotz, L.I. Murin, E.V. Monakhov, B.G. Svensson, J. Appl. Phys. 118, 135703 (2015)CrossRefGoogle Scholar
  76. M. Ramamoorthy, S.T. Pantelides, Solid State Commun. 106, 243 (1998)CrossRefGoogle Scholar
  77. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, Phys. Rev. B 86, 165202 (2012)CrossRefGoogle Scholar
  78. A. Sassella, A. Borghesi, P. Garanzani, G. Borionetti, Appl. Phys. Lett. 75, 1131 (1999)CrossRefGoogle Scholar
  79. K. Schmalz, P. Gaworzewski, Phys. Stat. Sol. (A) 64, 151 (1981)CrossRefGoogle Scholar
  80. J. Schmidt, K. Bothe, Phys. Rev. B 69, 024107 (2004)CrossRefGoogle Scholar
  81. F. Shimura, Semicond. Semimet. 42, 621 (1966)Google Scholar
  82. F. Shimura, J. Appl. Phys. 59, 3251 (1986)CrossRefGoogle Scholar
  83. E. Simoen, Y.L. Huang, Y. Ma, J. Lauwaert, P. Clauws, J.M. Rafi, A. Ulyashin, C. Claeys, J. Electrochem. Soc. 156, H434 (2009)CrossRefGoogle Scholar
  84. L.C. Snyder, J.W. Corbett, P. Deak, R. Wu, Mat. Res. Soc. Proc. 104, 179 (1988)CrossRefGoogle Scholar
  85. H.J. Stein, S. Hahn, J. Appl. Phys. 75, 3477 (1994)CrossRefGoogle Scholar
  86. H.J. Stein, S.K. Hahn, S.C. Shatas, J. Appl. Phys. 59, 3495 (1986)CrossRefGoogle Scholar
  87. K. Sueoka, M. Akatsuka, M. Yonemura, T. Ono, E. Asayama, H. Katahama, J. Electrochem. Soc. 147, 756 (2000)CrossRefGoogle Scholar
  88. Q. Sun, K.H. Yao, H.C. Gatos, J. Lagowski, J. Appl. Phys. 71, 3760 (1992)CrossRefGoogle Scholar
  89. D. Suwito, U. Jager, J. Benick, S. Janz, M. Hermle, S.W. Glunz, IEEE Trans. Electron. Devices 57, 2032 (2010)CrossRefGoogle Scholar
  90. B.G. Svensson, J.L. Lindström, Phys. Stat. Sol. (A) 95, 537 (1986)CrossRefGoogle Scholar
  91. R. Swaroop, N. Kim, W. Lin, M. Bullis, L. Shive, A. Rice, E. Castel, M. Christ, Solid State Technol. 3, 85–89 (1987)Google Scholar
  92. T. Tachibana, K. Nakamura, A. Ogura, Y. Ohshita, T. Shimoda, I. Masada, E. Nishijima, AIP Adv. 7, 045111 (2017)CrossRefGoogle Scholar
  93. M. Tajima, H. Takeno, T. Abe, Mat. Sci. Forum 83–87, 1327 (1991)Google Scholar
  94. M. Tajima, M. Warashina, H. Takeno, T. Abe, Appl. Phys. Lett. 65, 222 (1994)CrossRefGoogle Scholar
  95. M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, J. Appl. Phys. 111, 113523 (2012)CrossRefGoogle Scholar
  96. H. Takeno, Y. Hayamizu, K. Miki, J. Appl. Phys. 84, 3113 (1998)CrossRefGoogle Scholar
  97. Y. Tokuda, N. Kobayashi, A. Usami, Y. Inoue, M. Imura, J. Appl. Phys. 66, 3651 (1989)CrossRefGoogle Scholar
  98. Y. Tokuda, T. Shimokata, Y. Inoue, A. Usami, M. Imura, Semicond. Sci. Technol. 6, 66 (1991)CrossRefGoogle Scholar
  99. M. Tomassini, J. Veirman, R. Varache, E. Letty, S. Dubois, Y. Yu, Ø. Nielsen, J. Appl. Phys. 119, 084508 (2016)CrossRefGoogle Scholar
  100. K. Torigoe, T. Ono, J. Appl. Phys. 121, 215103 (2017)CrossRefGoogle Scholar
  101. V.J.B. Torres, J. Coutinho, R. Jones, M. Barroso, S. Öberg, P.R. Briddon, Physica B 376–377, 109 (2006)CrossRefGoogle Scholar
  102. L. Tsetseries, S. Wang, S.T. Pantelides, Appl. Phys. Lett. 88, 051916 (2006)CrossRefGoogle Scholar
  103. J. Vanhellemont, J. Appl. Phys. 78, 4297 (1995)CrossRefGoogle Scholar
  104. J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, C. Claeys, J. Appl. Phys. 77, 5669 (1995)CrossRefGoogle Scholar
  105. J. Vanhellemont, K. Nakamura, E. Kamiyama, K. Sueoka, in Defects and Impurities in Silicon Materials, Lecture Notes in Physics, vol.916, ed. by Y. Yoshida G. Langouche (Springer Tokyo, 2015), pp. 181–240Google Scholar
  106. V.V. Voronkov, J. Cryst. Growth 59, 625 (1982)CrossRefGoogle Scholar
  107. V.V. Voronkov, R. Falster, J. Appl. Phys. 91, 5802 (2002)CrossRefGoogle Scholar
  108. V.V. Voronkov, G.I. Voronkova, A.V. Batunina, R. Falster, V.N. Golovina, A.S. Guliaeva, N.B. Tiurina, M.G. Milvidski, J. Electrochem. Soc. 147, 3899 (2000)CrossRefGoogle Scholar
  109. V.V. Voronkov, G.I. Voronkova, A.V. Batunina, R. Falster, V.N. Golovina, A.S. Guliaeva, N.B. Tiurina, M.G. Milvidski, Solid State Phenom. 131–133, 387 (2008)Google Scholar
  110. K. Wada, N. Inoue, Electrochem. Soc. Proc. 86–4, 778 (1986)Google Scholar
  111. P. Wagner, J. Hage, Appl. Phys. A 49, 123 (1989)CrossRefGoogle Scholar
  112. W. Wijaranakula, Appl. Phys. Lett. 59, 1608 (1991)CrossRefGoogle Scholar
  113. D. Wruck, P. Gaworzewski, Phys. Stat. Sol. (A) 56, 557 (1979)CrossRefGoogle Scholar
  114. Z. Xi, J. Tang, H. Deng, D. Yang, D. Que, Sol. Energy Mater. Sol. Cells 91, 1688 (2007)CrossRefGoogle Scholar
  115. D. Yang, H.J. Möller, Sol. Energy Mater. Sol. Cells 72, 541 (2002)Google Scholar
  116. X. Yu, D. Yang, X. Ma, J. Yang, L. Li, D. Que, J. Appl. Phys. 92, 188 (2002)CrossRefGoogle Scholar
  117. S. Zhang, M. Juel, E.J. Øvrelid, G. Tranell, J. Cryst. Growth 411, 63 (2015)Google Scholar
  118. J. Zhao, A. Wang, M.A. Green, Prog. Photovolt. Res. Appl. 7, 471 (1999)CrossRefGoogle Scholar
  119. M. Zschorsch, R. Hölzl, H. Rüfer, H.J. Möller, W. von Ammon, Solid State Phenom. 95–96, 71 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IHP – Leibniz-Institut für innovative MikroelektronikFrankfurt (Oder)Germany

Section editors and affiliations

  • Michael Seibt
    • 1
  1. 1.Faculty of Physics - IV. Physical Institute - Ropers groupGeorg-August-University GoettingenGoettingenGermany

Personalised recommendations