Advertisement

Airborne and Spaceborne Passive Microwave Measurements of Soil Moisture

  • Jiancheng ShiEmail author
  • Tianjie Zhao
  • Qian Cui
  • Panpan Yao
Living reference work entry
Part of the Ecohydrology book series (ECOH)

Abstract

Soil moisture is the key variable that controls the surface water movements including infiltration, evapotranspiration, and groundwater recharge. It is one of the most important surface conditions of the exchange processes between land and atmosphere. Microwave remote sensing provides an efficient way to map surface soil moisture at a large scale from space and has achieved rapid development especially in large aperture systems at L-band. This chapter describes the basic theory and methodology for retrieving surface soil moisture including the soil roughness and vegetation effects. Special cases of soil moisture estimates from airborne and spaceborne measurements are presented. Results demonstrated that multichannel (multi-angle or multifrequency) microwave observations can be combined to enhance the retrieval accuracy and spatial resolution of remote sensed soil moisture.

Keywords

Soil moisture Passive Microwave Airborne measurements Satellite remote sensing 

References

  1. R. Bindlish, T. Jackson, M. Cosh, T. Zhao, P. O’Neill, Global soil moisture from the aquarius/SAC-D satellite: description and initial assessment. IEEE Geosci. Remote Sens. Lett. 12, 923–927 (2015)CrossRefGoogle Scholar
  2. K.S. Chen, T.D. Wu, L. Tsang, Q. Li, Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 41, 90–101 (2003)CrossRefGoogle Scholar
  3. L. Chen, J. Shi, J.-P. Wigneron, K.-S. Chen, A parameterized surface emission model at L-band for soil moisture retrieval. IEEE Geosci. Remote Sens. Lett. 7, 127–130 (2010)CrossRefGoogle Scholar
  4. Q. Cui, J. Shi, J. Du, T. Zhao, C. Xiong, An approach for monitoring global vegetation based on multiangular observations From SMOS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 604–616 (2015)CrossRefGoogle Scholar
  5. Q. Cui, X. Dong, J. Shi, T. Zhao, C. Xiong, An algorithm for retrieving soil moisture using L-band H-polarized multiangular brightness temperature data. IEEE Geosci. Remote Sens. Lett. 13, 1295–1299 (2016)CrossRefGoogle Scholar
  6. A. Della Vecchia, P. Ferrazzoli, F. Giorgio, L. Guerriero, A large scale approach to estimate L band emission from forest covered surfaces, in Proceedings of 2nd Recent Advances in Quantitative Remote Sensing (2006), pp. 925–930Google Scholar
  7. M.C. Dobson, F.T. Ulaby, M.T. Hallikainen, M.A. Elrayes, Microwave dielectric behavior of wet soil. 2. Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 23, 35–46 (1985)CrossRefGoogle Scholar
  8. D. Entekhabi, E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, J. Van Zyl, The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010)CrossRefGoogle Scholar
  9. M.J. Escorihuela, Y.H. Kerr, P. De Rosnay, J.-P. Wigneron, J.-C. Calvet, F. Lemaitre, A simple model of the bare soil microwave emission at L-band. IEEE Trans. Geosci. Remote Sens. 45, 1978–1987 (2007)CrossRefGoogle Scholar
  10. P. Ferrazzoli, L. Guerriero, J.P. Wigneron, Simulating L-band emission of forests in view of future satellite applications. IEEE Trans. Geosci. Remote Sens. 40, 2700–2708 (2002)CrossRefGoogle Scholar
  11. A.K. Fung, M.R. Shah, S. Tjuatja, Numerical-simulation of scattering from 3-dimensional randomly rough surfaces. IEEE Trans. Geosci. Remote Sens. 32, 986–994 (1994)CrossRefGoogle Scholar
  12. J.P. Grant, K. Saleh-Contell, J.-P. Wigneron, M. Guglielmetti, Y.H. Kerr, M. Schwank, N. Skou, A.A. Van de Griend, Calibration of the L-MEB model over a coniferous and a deciduous forest. IEEE Trans. Geosci. Remote Sens. 46, 808–818 (2008)CrossRefGoogle Scholar
  13. P. Guo, J. Shi, Q. Liu, J. Du, A new algorithm for soil moisture retrieval with L-band radiometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 1147–1155 (2013)CrossRefGoogle Scholar
  14. T.J. Jackson, Measuring surface soil-moisture using passive microwave remote-sensing. 3. Hydrol. Process. 7, 139–152 (1993)CrossRefGoogle Scholar
  15. T.J. Jackson, T.J. Schmugge, Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991)CrossRefGoogle Scholar
  16. T.J. Jackson, M.H. Cosh, R. Bindlish, P.J. Starks, D.D. Bosch, M. Seyfried, D.C. Goodrich, M.S. Moran, J. Du, Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 48, 4256–4272 (2010)CrossRefGoogle Scholar
  17. T.J. Jackson, R. Bindlish, M.H. Cosh, T. Zhao, P.J. Starks, D.D. Bosch, M. Seyfried, M.S. Moran, D.C. Goodrich, Y.H. Kerr, D. Leroux, Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens. 50, 1530–1543 (2012)CrossRefGoogle Scholar
  18. Y.H. Kerr, P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.-J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martín-Neira, S. Mecklenburg, The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010)CrossRefGoogle Scholar
  19. Y.H. Kerr, P. Waldteufel, P. Richaume, J.P. Wigneron, P. Ferrazzoli, A. Mahmoodi, A. Al Bitar, F. Cabot, C. Gruhier, S.E. Juglea, D. Leroux, A. Mialon, S. Delwart, The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 50, 1384–1403 (2012)CrossRefGoogle Scholar
  20. M. Kurum, P.E. O’Neill, R.H. Lang, A.T. Joseph, M.H. Cosh, T.J. Jackson, Effective tree scattering and opacity at L-band. Remote Sens. Environ. 118, 1–9 (2012)CrossRefGoogle Scholar
  21. H. Lawrence, J.-P. Wigneron, F. Demontoux, A. Mialon, Y.H. Kerr, Evaluating the semiempirical H-Q model used to calculate the L-band emissivity of a rough bare soil. IEEE Trans. Geosci. Remote Sens. 51, 4075–4084 (2013)CrossRefGoogle Scholar
  22. D.M. Le Vine, G.S.E. Lagerloef, F.R. Colomb, S.H. Yueh, F.A. Pellerano, Aquarius: an instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens. 45, 2040–2050 (2007)CrossRefGoogle Scholar
  23. A. Mialon, J.-P. Wigneron, P. de Rosnay, M. Jose Escorihuela, Y.H. Kerr, Evaluating the L-MEB model from long-term microwave measurements over a rough field, SMOSREX 2006. IEEE Trans. Geosci. Remote Sens. 50, 1458–1467 (2012)CrossRefGoogle Scholar
  24. V.L. Mironov, L.G. Kosolapova, S.V. Fomin, Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 47, 2059–2070 (2009)CrossRefGoogle Scholar
  25. T. Mo, T.J. Schmugge, A parameterization of the effect of surface-roughness on microwave emission. IEEE Trans. Geosci. Remote Sens. 25, 481–486 (1987)CrossRefGoogle Scholar
  26. E.G. Njoku, S.K. Chan, Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 100, 190–199 (2006)CrossRefGoogle Scholar
  27. J.A. Ogilvy, J.R. Foster, Rough surfaces-gaussian or exponential statistics. J. Phys. D Appl. Phys. 22, 1243–1251 (1989)CrossRefGoogle Scholar
  28. S.S. Saatchi, N.L. Harris, S. Brown, M. Lefsky, E.T. Mitchard, W. Salas, B.R. Zutta, W. Buermann, S.L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, A. Morel, Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America. 108, 9899–9904 (2011)CrossRefGoogle Scholar
  29. M. Schwank, I. Voelksch, J.-P. Wigneron, Y.H. Kerr, A. Mialon, P. de Rosnay, C. Maetzler, Comparison of two bare-soil reflectivity models and validation with L-band radiometer measurements. IEEE Trans. Geosci. Remote Sens. 48, 325–337 (2010)CrossRefGoogle Scholar
  30. J. Shi, J. Wang, A.Y. Hsu, P.E. O’Neill, E.T. Engman, Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 35, 1254–1266 (1997)CrossRefGoogle Scholar
  31. J.C. Shi, L.M. Jiang, L.X. Zhang, K.S. Chen, J.P. Wigneron, A. Chanzy, A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens. 43, 2831–2841 (2005)CrossRefGoogle Scholar
  32. J. Shi, T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen, Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens. Environ. 112, 4285–4300 (2008)CrossRefGoogle Scholar
  33. J. Shi, X. Dong, T. Zhao, J. Du, L. Jiang, Y. Du, H. Liu, Z. Wang, D. Ji, C. Xiong, WCOM: the science scenario and objectives of a global water cycle observation mission, in 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE International Symposium on Geoscience and Remote Sensing IGARSS (IEEE, New York, 2014), pp. 3646–3649Google Scholar
  34. A.B.. Smith, J.P. Walker, A.W. Western, R.I. Young, K.M. Ellett, R.C. Pipunic, R.B. Grayson, L. Siriwardena, F.H.S. Chiew, H. Richter, The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 48, 7701 (2012)Google Scholar
  35. F.T. Ulaby, F. Kouyate, A.K. Fung, A.J. Sieber, A backscatter model for a randomly perturbed periodic surface. IEEE Trans. Geosci. Remote Sens. 20, 518–528 (1982a)CrossRefGoogle Scholar
  36. F.T. Ulaby, A. Aslam, M.C. Dobson, Effects of vegetation cover on the radar sensitivity to soil-moisture. IEEE Trans. Geosci. Remote Sens. 20, 476–481 (1982b)CrossRefGoogle Scholar
  37. A.A. Van de Griend, J.P. Wigneron, The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens. 42, 786–794 (2004)CrossRefGoogle Scholar
  38. N.E.C. Verhoest, H. Lievens, W. Wagner, J. Alvarez-Mozos, M.S. Moran, F. Mattia, On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 8, 4213–4248 (2008)CrossRefGoogle Scholar
  39. J.R. Wang, B.J. Choudhury, Remote-sensing of soil-moisture content over bare field at 1.4 GHz frequency. J. Geophys. Res. Atmos. 86, 5277–5282 (1981)CrossRefGoogle Scholar
  40. J.R. Wang, T.J. Schmugge, An empirical-model for the complex dielectric permittivity of soils as a funcion of water-content. IEEE Trans. Geosci. Remote Sens. 18, 288–295 (1980)CrossRefGoogle Scholar
  41. J.P. Wigneron, L. Laguerre, Y.H. Kerr, A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 39, 1697–1707 (2001)CrossRefGoogle Scholar
  42. J.P. Wigneron, Y. Kerr, P. Waldteufel, K. Saleh, M.J. Escorihuela, P. Richaume, P. Ferrazzoli, P. de Rosnay, R. Gurney, J.C. Calvet, J.P. Grant, M. Guglielmetti, B. Hornbuckle, C. Mätzler, T. Pellarin, M. Schwank, L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens. Environ. 107, 639–655 (2007)CrossRefGoogle Scholar
  43. T. Zhao, J. Shi, R. Bindlish, T.J. Jackson, M. Cosh, L. Jiang, Z. Zhang, H. Lan, Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval. Phys. Chem. Earth 83–84, 65–74 (2015a)CrossRefGoogle Scholar
  44. T.J. Zhao, J.C. Shi, R. Bindlish, T.J. Jackson, Y.H. Kerr, M.H. Cosh, Q. Cui, Y.Q. Li, C. Xiong, T. Che, Refinement of SMOS multi-angular brightness temperature toward soil moisture retrieval and its analysis over reference targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 589–603 (2015b)CrossRefGoogle Scholar
  45. M. Zribi, A. Gorrab, N. Baghdadi, A new soil roughness parameter for the modelling of radar backscattering over bare soil. Remote Sens. Environ. 152, 62–73 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiancheng Shi
    • 1
    Email author
  • Tianjie Zhao
    • 1
  • Qian Cui
    • 1
  • Panpan Yao
    • 1
  1. 1.State Key Laboratory of Remote Sensing ScienceInstitute of Remote Sensing and Digital Earth, Chinese Academy of ScienceBeijingChina

Personalised recommendations