Advertisement

Satellite Gravitational Gradiometry: Methodological Foundation and Geomathematical Advances/ Satellitengradiometrie: Methodologische Fundierung und geomathematische Fortschritte

  • Willi FreedenEmail author
  • Helga Nutz
  • Reiner Rummel
  • Michael Schreiner
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Abstract

Satellite Gravitational Gradiometry (SGG) is an observational technique of globally establishing the fine structure and the characteristics of the external Earth’s gravitational field. The “Gravity field and steady-state Ocean Circulation Explorer” GOCE (2009–2013) was the first satellite of ESA’s satellite programme intended to realize the principle of SGG and to deliver useful SGG-data sets. In fact, GOCE was capable to provide suitable data material of homogeneous quality and high data density.

Mathematically, SGG demands the determination of the gravitational potential in the exterior of the Earth including its surface from given data of the gravitational Hesse tensor along the satellite orbit. For purposes of modeling we are led to invert the “upward continuation”-operator resulting from the Abel–Poisson integral formula of potential theory. This approach requires the solution of a tensorial Fredholm integral equation of the first kind relating the desired Earth’s gravitational potential to the measured orbital gravitational gradient acceleration. The integral equation constitutes an exponentially ill-posed problem of the theory of inverse problems, which inevitably needs two regularization processes, namely “downward continuation” and (weak or strong) “error regularization” in the case of noisy data.

This contribution deals with two different SGG-multiscale regularization methods, one in space domain and the other in frequency domain. Both procedures provide the gravitational potential as derived from tensorial SGG-data along the satellite orbit on the real Earth’s surface as required from the view point of geodesy.

Keywords

Satellite gravitational gradiometry (SGG) Tensorial pseudodifferential equation ‘‘Up- and downward continuation” Invertibility Exponential ill-posedness Multiscale regularization Space/frequency decorrelation 

Zusammenfassung

Gravitationsgradiometrie mittels Satelliten (SGG) ist eine Meßtechnik zur globalen Bestimmung der Feinstruktur und der Eigenschaften des Gravitationsfeldes im Außenraum der Erde samt Erdoberfläche. Der ESA-Satellit GOCE (2009–2013) war der erste, dessen Aufgabe es war, das Prinzip SGG umzusetzen und brauchbare SGG-Daten zu liefern. GOCE gelang es in der Tat, Datenmaterial in einheitlicher Qualität und hoher Datendichte bereitzustellen.

Mathematisch erfordert SGG die Bestimmung des Gravitationspotentials im Außenraum der Erde unter Einschluss der Erdoberfläche aus vorgegebenen Daten des Hesse-Tensors des Gravitationspotentials auf dem Satellitenorbit. Die Modellierung führt auf die Inversion des ,,upward continuation“-Operators, der aus der Abel-Poissonschen Integralformel der Potentialtheorie resultiert. Dieser Zugang erfordert die Lösung einer tensoriellen Fredholmschen Integralgleichung erster Art, die das Gravitationspotential im Außenraum der Erde zu entlang des Orbits gemessenen Gravitationsgradientbeschleunigungen in Beziehung setzt. Zur Lösung der Integralgleichung ist ein exponentiell schlecht-gestelltes Problem der Therorie inverser Probleme zu bewältigen, das unvermeidlich zweier Regularisierungprozesse bedarf, nämlich ,,downward continuation“ und (schwache oder starke) ,,Fehler-Regularisierung“ im Falle verrauschter Daten.

Dieser Beitrag beschäftigt sich mit zwei verschiedenen SGG-Multiskalen-Regularisierungsmethoden, eine im Ortsbereich und eine andere im Frequenzbereich. Beide Zugänge liefern das Gravitationspotential – in der Tat wie aus geodätischer Sicht gefordert – auf der tatsächlichen Erdoberfläche aus tensoriellen, entlang von Satellitenorbits gemessenen SGG-Daten.

Notes

Acknowledgements

W. Freeden and H. Nutz thank the “Federal Ministry for Economic Affairs and Energy, Berlin” and the “Project Management Jülich” for funding the project “SPE” (funding reference number 0324016, CBM – Gesellschaft für Consulting, Business und Management mbH, Bexbach, Germany) on gravimetric potential methods in geothermal exploration.

References

  1. 1.
    Abalakine, V., Balmino, G., Lambeck, K., Moritz, H., Mulholland, J.D., Tozer, F.: La Geodynamique Spatiale. Summer School Lecture Notes, Centre Nationale D’Etudes Spatiales, 20.8–13.9, Lannion (1974)Google Scholar
  2. 2.
    Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 12, 605–645 (2003)CrossRefGoogle Scholar
  3. 3.
    Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge-Walsh concept for gravitational field determination. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 517–560. Birkhäuser, Basel (2018)CrossRefGoogle Scholar
  4. 4.
    Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)CrossRefGoogle Scholar
  5. 5.
    Backus, G.E., Gilbert, F.: The resolving power of gross Earth data. Geophys. J. R. Astron. Soc. 16, 169–205 (1968)CrossRefGoogle Scholar
  6. 6.
    Backus, G.E., Gilbert, F.: Uniqueness in the inversion of inaccurate gross Earth data. Philos. Trans. R. Soc. Lond. A 266, 123–192 (1970)CrossRefGoogle Scholar
  7. 7.
    Balmino, G., Barlier, F., Bernard, A., Bouzat, C., Rummel, R., Touboul, P.: Proposal for a Satellite Gravity Gradiometer Experiment for the Geosciences, 168pp., Toulouse Cedex, preprint (1985)Google Scholar
  8. 8.
    Bernard, A., Canny, J.P., Juillerat, R., Touboul, P.: Electrostatic suspension of samples in microgravity. Acta Astron. 12(7–8), 469–646 (1985)Google Scholar
  9. 9.
    Beutler, G.B., Drinkwater, M.R., Rummel, R., von Steiger, R.: Earth gravity field from space – from sensors to Earth sciences. In: The Space Sciences Series of ISSI, vol. 18, pp. 419–432. Kluwer, Dordrecht (2003)Google Scholar
  10. 10.
    Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)CrossRefGoogle Scholar
  11. 11.
    Beylkin, G., Monzón, L.: Approximation of functions by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)CrossRefGoogle Scholar
  12. 12.
    Bjerhammar, A.: Gravity Reduction to an Internal Sphere. Division of Geodesy, Stockholm (1962)Google Scholar
  13. 13.
    Buchar, E.: Motion of the nodal line of the second Russian Earth satellite (1957) and flattening of the Earth. Nature 182, 198–199 (1958)CrossRefGoogle Scholar
  14. 14.
    Burschäpers, H.C.: Local modeling of gravitational data. Master Thesis, Geomathematics Group, Mathematics Department, University of Kaiserslautern (2013)Google Scholar
  15. 15.
    Carroll, J.J., Savet, P.H.: Gravity difference detection. Aerosp. Eng. 18, 44–47 (1959)Google Scholar
  16. 16.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)CrossRefGoogle Scholar
  17. 17.
    Dickey, J.O. (ed.): Satellite gravity and the geosphere. Committee of Earth Gravity from Space. National Research Council Report, 112pp., Nat. Acad. Washington, D.C. (1977)Google Scholar
  18. 18.
    Diesel, J.W.: A new approach to gravitational gradient determination of the vertical. AIAA J. 2(7), 1189–1196 (1964)CrossRefGoogle Scholar
  19. 19.
    Eggermont, P.N., LaRiccia, V., Nashed, M.Z.: Noise models for ill–posed problems. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn., pp. 1633–1658. Springer, New York (2014)Google Scholar
  20. 20.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht/Boston/London (1996)CrossRefGoogle Scholar
  21. 21.
    Engl, H., Louis, A.K., Rundell, W.: Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)Google Scholar
  22. 22.
    ESA: Space oceanography, navigation and geodynamics. In: Proceedings of a European workshop, ESA SP-137, Schloss Elmau (1978)Google Scholar
  23. 23.
    ESA: Gravity Field and Steady-State Ocean Circulation Mission (GOCE), ESTEC, Noordwijk, ESA SP–1233(1) (1999)Google Scholar
  24. 24.
    Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Ph.D Thesis, Geomathematics Group, University of Kaiserslautern (2009)Google Scholar
  25. 25.
    Fengler, M., Freeden, W., Gutting, M.: The spherical Bernstein wavalets. Int. J. Pure Appl. Math. 31, 209–230 (2006)Google Scholar
  26. 26.
    Fehlinger, T., Freeden, W., Gramsch, S., Mayer, C., Michel, D., Schreiner, M.: Local modelling of sea surface topography from (geostrophic) ocean flow. ZAMM 87, 775–791 (2007)CrossRefGoogle Scholar
  27. 27.
    Forward, R.L.: Geodesy with orbiting gravity gradiometers. Use of Artificial Satellites for Geodesy, AGU Monograph No.15, U.S. Government Printing Office, Washington D.C. (1972)Google Scholar
  28. 28.
    Forward, R.L., Miller, R.: Generation and detection of dynamic gravitational-gradient fields. J. Appl. Phys. 38, 512 (1967). https://doi.org/10.1063/1.1709366 CrossRefGoogle Scholar
  29. 29.
    Fowler, C.M.R.: The Solid Earth, 2nd edn. Cambridge University Press, Cambridge (2005)Google Scholar
  30. 30.
    Freeden, W.: On the approximation of the external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)CrossRefGoogle Scholar
  31. 31.
    Freeden, W.: On spherical spline interpolation and approximation. Math. Methods Appl. Sci. 3, 551–575 (1981)CrossRefGoogle Scholar
  32. 32.
    Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)Google Scholar
  33. 33.
    Freeden, W.: A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Math. Part. Diff. Equ. 3, 375–398 (1987)CrossRefGoogle Scholar
  34. 34.
    Freeden, W.: The uncertainty principle and its role in physical geodesy. In: Freeden, W. (ed.) Progress in Geodetic Science (Geodetic Week, Kaiserslautern, 1998), pp. 225–236. Shaker, Aachen (1998)Google Scholar
  35. 35.
    Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)Google Scholar
  36. 36.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman & Hall/CRC Press, Boca Raton (2013)Google Scholar
  37. 37.
    Freeden, W., Gutting, M.: On the completeness and closure of vector and tensor spherical harmonics. Integral Transforms Spec. Funct. 19, 713–734 (2008)CrossRefGoogle Scholar
  38. 38.
    Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo)Physics. Birkhäuser, Basel (2013)CrossRefGoogle Scholar
  39. 39.
    Freeden, W., Gutting, M.: Integration and Cubature Methods. CRC Press/Taylor & Francis Group, Boca Raton (2017)CrossRefGoogle Scholar
  40. 40.
    Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. (ETNA) 14, 40–62 (2002)Google Scholar
  41. 41.
    Freeden, W., Maier, T.: Spectral and multiscale signal–to–noise thresholding of spherical vector fields. Comput. Geosci. 7(3), 215–250 (2003)CrossRefGoogle Scholar
  42. 42.
    Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston/Basel/Berlin (2004)CrossRefGoogle Scholar
  43. 43.
    Freeden, W., Michel, V.: Orthogonal zonal, tesseral, and sectorial wavelets on the sphere for the analysis of satellite data. Adv. Comput. Math. 21, 187–217 (2004)CrossRefGoogle Scholar
  44. 44.
    Freeden, W., Nashed, M.Z.: Inverse gravimetry: background material and multiscale mollifier approaches. GEM Int. J. Geomath. 9, 199–264 (2018)CrossRefGoogle Scholar
  45. 45.
    Freeden, W., Nashed, M.Z.: Ill-posed problems: operator methodologies of resolution and regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy: Functional Analytic and Potential Methods, pp. 201–314. Birkhäuser/Springer International Publishing, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  46. 46.
    Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. GEM Int. J. Geomath. 2, 177–218 (2011)CrossRefGoogle Scholar
  47. 47.
    Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy: Functional Analytic and Potential Methods, pp. 315–458. Birkhäuser/Springer International Publishing, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  48. 48.
    Freeden, W., Sansó, F.: Geodesy and mathematics: interactions, acquisitions, and open problems. International Association of Geodesy Symposia (IAGS), IX Hotine-Marussi Symposium, Rome. Springer proceedings 2019 (submitted for publication)Google Scholar
  49. 49.
    Freeden, W., Schneider, F.: Regularization wavelets and multiresolution. Inverse Probl. 14, 493–515 (1998)CrossRefGoogle Scholar
  50. 50.
    Freeden, W., Schneider, F.: Wavelet approximation on closed surfaces and their application to boundary value problems of potential theory. Math. Methods Appl. Sci. 21, 129–163 (1998)CrossRefGoogle Scholar
  51. 51.
    Freeden, W., Schreiner, M.: Satellte gradiometry – from mathematical and numerical point of view. In: Rummel, R., Schwintzer, P. (eds.) A major STEP for Geodesy, Report 1994 of the STEP Geodesy Working Group, Munich/Potsdam, pp. 35–44 (1994)Google Scholar
  52. 52.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin/Heidelberg (2009)Google Scholar
  53. 53.
    Freeden, W., Schreiner, M.: Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn., pp. 339–380. Springer/New York/Heidelberg (2015)Google Scholar
  54. 54.
    Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion. Appl. Comput. Harm. Anal. (ACHA) 4, 1–37 (1997)Google Scholar
  55. 55.
    Freeden, W., Witte, B.: A combined (spline-)interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)CrossRefGoogle Scholar
  56. 56.
    Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterberichte 56, 53–77 (2008)CrossRefGoogle Scholar
  57. 57.
    Freeden, W., Schneider, F., Schreiner, M.: Gradiometry – an inverse problem in modern satellite geodesy. In: Engl, H.W., Louis, A., Rundell, W. (eds.) GAMM–SIAM Symposium on Inverse Problems: Geophysical Applications, pp. 179–239 (1997)Google Scholar
  58. 58.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications/Clarendon Press, Oxford (1998)Google Scholar
  59. 59.
    Freeden, W., Michel, V., Nutz, H.: Satellite-to-satellite tracking and satellite gravity gradiometry (advanced techniques for high-resolution geopotential field determination). J. Eng. Math. 43, 19–56 (2002)CrossRefGoogle Scholar
  60. 60.
    Freeden, W., Michel, D., Michel, V.: Local multiscale approximation of geostrophic oceanic flow: theoretical background and aspects of scientific computing. Mar. Geod. 28, 313–329 (2005)CrossRefGoogle Scholar
  61. 61.
    Freeden, W., Fehlinger, T., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geod. 83, 1171–1191 (2009)CrossRefGoogle Scholar
  62. 62.
    Freeden, W., Michel, V., Simons, F.J.: Spherical harmonics based special function systems and constructive approximation methods. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy: Functional Analytic and Potential Methods, pp. 201–314. Birkhäuser/Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  63. 63.
    Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystems Mathematics. Springer International Publishing, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  64. 64.
    Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D Thesis, Geomathematics Group, University of Kaiserslautern (2011)Google Scholar
  65. 65.
    Gill, A.E.: Atmosphere – Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  66. 66.
    Glockner, O.: On numerical aspects of gravitational field modelling from SST and SGG by harmonic splines and wavelets (with application to CHAMP data). Ph.D Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2002)Google Scholar
  67. 67.
    Grafarend, E.W.: The reference figure of the rotating Earth in geometry and gravity space and an attempt to generalize the celebrated Runge-Walsh approximation theorem for irregular surfaces. GEM Int. J. Geomath. 6, 101–140 (2015)CrossRefGoogle Scholar
  68. 68.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)CrossRefGoogle Scholar
  69. 69.
    Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D Thesis, University of Kaiserslautern, Geomathematics Group. Shaker, Aachen (2008)Google Scholar
  70. 70.
    Gutting, M.: Parameter choices for fast harmonic spline approximation. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Functional Analytic and Potential Methods, pp. 605–639. Birkhäuser/Springer International Publishing, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  71. 71.
    Hackbusch, W.: Entwicklungen nach Exponentialsummen. Technical Report. Max-Planck-Institut für Mahematik in den Naturwissenschaften, Leipzig (2010)Google Scholar
  72. 72.
    Hackbusch, W., Khoromoskij, B.N., Klaus, A.: Approximation of functions by exponential sums based on the Newton-type optimisation. Technical Report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)Google Scholar
  73. 73.
    Hadamard, J.: Sur les problémes aux dérivés partielles et leur signification physique. Princeton Univ. Bull. 13, 49–52 (1902)Google Scholar
  74. 74.
    Hager, B.H., Richards, M.A.: Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A 328, 309–327 (1989)CrossRefGoogle Scholar
  75. 75.
    Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  76. 76.
    Hendriksen, S.W. (ed.): National Geodetic Satellite Program. Part 1 and 2, NASA Washington DC (1977)Google Scholar
  77. 77.
    Hesse, K.: Domain decomposition methods in multiscale geopotential determination from SST and SGG. Ph.D Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2003)Google Scholar
  78. 78.
    Hotine, M.: Mathematical Geodesy. ESSA Monographs, 2, U.S. Department of Commerce, Washington, D.C., Rockville (1985)Google Scholar
  79. 79.
    Kaula, W.M. (ed.): The Terrestrial Environment – Solid Earth and Ocean Physics Application of Space and Astronomic Techniques. Report of a study at Williamstown/Mass. to NASA, Cambridge, MA (1969)Google Scholar
  80. 80.
    Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)CrossRefGoogle Scholar
  81. 81.
    Kirsch, A.: Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)CrossRefGoogle Scholar
  82. 82.
    Krarup, T.: A Contribution to the mathematical foundation of physical geodesy. Meddelelse No. 44, Geodätisk Inst Köbenhavn (1969)Google Scholar
  83. 83.
    Listing, J.B.: Über unsere jetzige Kenntniss der Gestalt und Grösse der Erde. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der G. A. Universität zu Göttingen 3, 33–98 (1873)Google Scholar
  84. 84.
    Louis, A.K.: Inverse und schlecht gestellte Probleme, Teubner, Leipzig (1989)CrossRefGoogle Scholar
  85. 85.
    Marussi, A.: The tidal field of a planet and the related intrinsic reference systems. Geophys. J.R. Astr. Soc. 56, 409–417 (1979)Google Scholar
  86. 86.
    Marussi, A.: Microgravitation in space. Geophys. J. R. Astron. Soc. 76, 691–695 (1984)CrossRefGoogle Scholar
  87. 87.
    Marussi, A., Chiaruttini, C.: The motion of a free particle and of a spherical satellite in a circular orbit in a central field. In: Marussi, A. (ed.) Intrinsic Geodesy, pp. 179–189. Springer, Berlin (1985)CrossRefGoogle Scholar
  88. 88.
    Meissl, P.: A study of covariance functions related to the Earth’s disturbing potential. Department of Geodetic Science, No. 151, The Ohio State University, Columbus (1971)Google Scholar
  89. 89.
    Merson, R.H., King-Hele, D.G.: Use of artificial satellites to explore the Earth’s gravitational field: results from Sputnik 2 (1957). Nature 182, 640–641 (1958)CrossRefGoogle Scholar
  90. 90.
    Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D Thesis, University of Kaiserslautern, Geomathematics Group. Shaker, Aachen (1999)Google Scholar
  91. 91.
    Michel, V.: Lectures on Constructive Approximation – Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2013)Google Scholar
  92. 92.
    Moritz, H.: Kinematic Geodesy. Deutsche Geodätische Kommission A-59, München (1968)Google Scholar
  93. 93.
    Moritz, H.: Advanced least squares estimation. Department of Geodetic Science, No. 175, The Ohio State University, Columbus (1972)Google Scholar
  94. 94.
    Moritz, H.: Recent developments in the geodetic boundary value problem. Department of Geodetic Science, No. 266, The Ohio State University, Columbus (1977)Google Scholar
  95. 95.
    Moritz, H.: Inertia and gravitation in geodesy. In: Proceedings of 3rd International Symposium Inertial Technology for Surveying and Geodesy, Banff, vol. I (1986)Google Scholar
  96. 96.
    Moritz, H.: Advanced Physical Geodesy, 2nd edn. Wichmann Verlag, Karlsruhe (1989)Google Scholar
  97. 97.
    Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 253–289. Springer, New York (2015)CrossRefGoogle Scholar
  98. 98.
    Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)Google Scholar
  99. 99.
    NASA: Earth and Ocean Physics Applications Program. Volume II, Rationale and Program Plans (1972)Google Scholar
  100. 100.
    Nashed, M.Z.: Generalized inverses and applications. Proceedings of an Advanced Seminar Conducted by the Mathematics Research Center, University of Wisconsin, Madison (1976)Google Scholar
  101. 101.
    Nashed, M.Z.: Operator–theoretic and computational approaches to ill–posed problems with applications to antenna theory. IEEE Trans. Antennas Propag. 29(2), 220–231 (1981)CrossRefGoogle Scholar
  102. 102.
    Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations. In: Engl, H.W., Groetsch, C.W. (eds.) Inverse and Ill–Posed Problems. Notes and Reports in Mathematics in Science and Engineering, vol. 4, pp. 53–75. Academic Press, New York (1987)CrossRefGoogle Scholar
  103. 103.
    Nashed, M.Z.: Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9, 261–325 (1987)CrossRefGoogle Scholar
  104. 104.
    NRC: Committee on Geodesy: Applications of a Dedicated Gravitational Satellite Mission. National Academy Press, Washington, D.C. (1979)Google Scholar
  105. 105.
    Nutz, H.: A unified setup of gravitational field observables. Ph.D Thesis, University of Kaiserslautern, Geomathematics Group. Shaker, Aachen (2002)Google Scholar
  106. 106.
    Nutz, H., Wolf, K.: Multiresolution analysis of hydrology and satellite gravitational data. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 497–518. Springer, Berlin/Heidelberg (2015)CrossRefGoogle Scholar
  107. 107.
    Pavlis, N.K., Holmes, S.A., Kenyon, S.C., John, K., Factor, J.K.: The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth (1978–2012) 117(B4), 04406 (2012)Google Scholar
  108. 108.
    Rieder, A.: Keine Probleme mit Inversen Problemen. Vieweg, Wiesbaden (2003)CrossRefGoogle Scholar
  109. 109.
    Rummel, R.: Determination of short-wavelength components of the gravity field by satellite-to-satellite tracking or satellite gradiometry: an attempt to an identification of problem areas. Manuscr. Geod. 4, 107–148 (1979)Google Scholar
  110. 110.
    Rummel, R.: Satellite gradiometry. In: Sünkel H. (ed.) Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, vol. 7, pp. 317–363. Springer, Berlin (1986).  https://doi.org/10.1007/BFb0010135 CrossRefGoogle Scholar
  111. 111.
    Rummel, R.: ARISTOTELES: surface gravity from space gradiometry. In: Proceedings of the Italian Workshop on the European Solid–Earth mission ARISTOTELES. Aeritalia, Trevi (1989)Google Scholar
  112. 112.
    Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Rummel, R., Sansò, F. (eds.) Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin (1997)Google Scholar
  113. 113.
    Rummel, R.: GOCE: gravitational gradiometry in a satellite. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn., pp. 211–226. Springer, New York/Heidelberg (2015)CrossRefGoogle Scholar
  114. 114.
    Rummel, R., van Gelderen, M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992)CrossRefGoogle Scholar
  115. 115.
    Rummel, R., van Gelderen, M.: Meissl scheme – spectral characteristics of physical geodesy. Manuscr. Geod. 20, 379–385 (1995)Google Scholar
  116. 116.
    Rummel, R., van Gelderen, M., Koop, R., Schrama, E., Sansò, F., Brovelli, M., Miggliaccio, F., Sacerdote, F.: Spherical Harmonic Analysis of Satellite Gradiometry. Publications on Geodesy, 39, Delft (1993)Google Scholar
  117. 117.
    Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6, 229–234 (1885)CrossRefGoogle Scholar
  118. 118.
    Sansò, F.: A note on density problems and the Runge-Krarup theorem. Boll. Geod. Sci. Affini. 41, 422–477 (1982)Google Scholar
  119. 119.
    Sansò, F., Rummel, R. (eds.): Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, vol. 65. Springer, Berlin/Heidelberg (1997)Google Scholar
  120. 120.
    Sansò, F., Barzaghi, R., Tscherning, C.C.: Choice of norm for the density distribution of the Earth. Geophys. J. R. Astron. Soc. 87, 123–141 (1968)CrossRefGoogle Scholar
  121. 121.
    Savet, P.H.: Gravity field exploration by a new gradient technique. J. Spacecr. 6(6), 710–716 (1969)CrossRefGoogle Scholar
  122. 122.
    Schneider, F.: Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Ph.D. Thesis, University of Kaiserslautern, Geomathematics Group. Shaker, Aachen (1997)Google Scholar
  123. 123.
    Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. Thesis, University of Kaiserslautern, Geomathematics Group (1994)Google Scholar
  124. 124.
    Schreiner, M.: Uniqueness problems in satellite gradiometry. In: Neunzert, H. (ed.) Proceedings of the 8th Conference of the European Consortium for Mathematics in Industry. University of Kaiserslautern (1994)Google Scholar
  125. 125.
    Schreiner, M.: Wavelet approximation by spherical up functions. Habilitation Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2004)Google Scholar
  126. 126.
    Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)CrossRefGoogle Scholar
  127. 127.
    Svensson, S.L.: Pseudodifferential operators – a new approach to the boundary value problems of physical geodesy. Manuscr. Geod. 8, 1–40 (1983)Google Scholar
  128. 128.
    Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.W.: GRACE measurements of mass variability in the Earth system. Science 305(5683), 503–505 (2004)CrossRefGoogle Scholar
  129. 129.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)Google Scholar
  130. 130.
    Torge, W.: Gravimetry. De Gruyter, Berlin/New York (1989)Google Scholar
  131. 131.
    Tscherning, C.C.: A note of the choice of norm when using collocation for the computation of approximations to the anomalous potential. Bull. Géod. 51, 137–147 (1977)CrossRefGoogle Scholar
  132. 132.
    Vekua, I.N.: Über die Vollständigkeit des Systems harmonischer Polynome im Raum (Russian). Dokl. Akad. Nauk 90, 495–498 (1953)Google Scholar
  133. 133.
    Wahr, J., Molenaar, M.: Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103(B12), 30:205–30:229 (1998)Google Scholar
  134. 134.
    Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc. 35, 499–544 (1929)CrossRefGoogle Scholar
  135. 135.
    Watts, A.B.: Isostasy and the Flexure of the Lithosphere. Cambridge University Press, Cambridge (2001)Google Scholar
  136. 136.
    Wells, W.C. (ed.): Spaceborne gravity gradiometers. Proceedings of Workshop held at NASA Goddard Space Flight Center, NASA Conference Publication 2305, Greenbelt (1984)Google Scholar
  137. 137.
    Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D Thesis, Geomathematics Group, University of Kaiserslautern (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Willi Freeden
    • 1
    Email author
  • Helga Nutz
    • 2
  • Reiner Rummel
    • 3
  • Michael Schreiner
    • 4
  1. 1.Department of MathematicsTU KaiserslauternKaiserslauternGermany
  2. 2.CBM – Gesellschaft für ConsultingBusiness und Management mbHBexbachGermany
  3. 3.Astronomical and Physical GeodesyTU MunichMunichGermany
  4. 4.Institute for Computational EngineeringUniversity of Applied Sciences of Technology NTBBuchsSwitzerland

Section editors and affiliations

  • Willi Freeden
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations