Laboratory Investigation of the Child with Suspected Renal Disease

  • George van der WattEmail author
  • Fierdoz Omar
  • Anita Brink
  • Mignon McCulloch
Reference work entry


The kidney can be injured by a variety of different mechanisms. Investigating the type and assessing the degree of injury and its progression involves laboratory assessment and often tissue sampling. This chapter will discuss laboratory assessment and investigation with emphasis on the use of blood and urine samples to investigate renal function.


Acute Kidney Injury Reference Interval Urine Osmolality Renal Tubular Acidosis Nephrogenic Diabetes Insipidus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children and adults. J Pediatr. 1978;93:62–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Guignard JP, Santos F. Laboratory investigations. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott Williams Wilkins; 2004. p. 349–424.Google Scholar
  3. 3.
    Durand E, Prigent A. The basics of renal imaging and function studies. J Nucl Med. 2002;46:249–67.Google Scholar
  4. 4.
    Odlund B, Hällgren R, Sohtell M, Lindström B. Is 125I-iothalamate an ideal marker for glomerular filtration? Kidney Int. 1985;27:9–16.CrossRefGoogle Scholar
  5. 5.
    Bhatt MK, Bartlett ML, Mallitt KA, McTaggart S, Ravi Kumar AS. Correlation of various published radionuclide glomerular filtration rate estimation techniques and proposed paediatric normative data. Nucl Med Commun. 2011;32(11):1088–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Nilsson-Ehle P, Grubb A. New markers for determination of GFR: iohexol clearance and cystatin C serum concentration. Kidney Int. 1994;46:S17–19.Google Scholar
  7. 7.
    Krustzen E, Back SE, Nilsson-Ehle P. Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest. 1990;50:279–83.CrossRefGoogle Scholar
  8. 8.
    Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6:257–63.PubMedGoogle Scholar
  9. 9.
    Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, Pasic MD, Armbruster D, Adeli K. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Namnum P, Insogna K, Baggish D, Hayslett JP. Evidence for bidirectional net movement of creatinine in the rat kidney. Am J Physiol. 1983;244:F719–23.PubMedGoogle Scholar
  11. 11.
    Sjöstrom PA, Odlind BG, Wolgast M. Extensive tubular secretion and reabsorption of creatinine in humans. Scand J Urol Nephrol. 1988;22:129–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F. Glomerular filtration rate reference values in very preterm infants. Pediatrics. 2010;125(5):1186–92.CrossRefGoogle Scholar
  13. 13.
    Piepsz A, Tondeur M, Ham H. Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging. 2006;33(12):1477–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Doolan PD, Alpen EL, Theil GB. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med. 1962;32:65–79.CrossRefPubMedGoogle Scholar
  15. 15.
    Fong J, Johnston S, Valentino T, Notterman D. Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther. 1995;58:192–1977.CrossRefPubMedGoogle Scholar
  16. 16.
    Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M, Eckfeldt JH, National Kidney Disease Education Program Laboratory Working Group. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F, Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53(4):766–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Greenberg N, Roberts WL, Bachmann LM, Wright EC, Dalton RN, Zakowski JJ, Miller WG. Specificity characteristics of seven commercial creatinine measurement procedures using enzymatic and Jaffe method principles. Clin Chem. 2012;58:391–401.CrossRefPubMedGoogle Scholar
  21. 21.
    Finney H, Newman DJ, Thakkar H, Fell JM, Price CP. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates and older children. Arch Dis Child. 2000;82:71–5.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest. 1996;56:409–14; Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 1998;44:1535–1539.CrossRefPubMedGoogle Scholar
  23. 23.
    Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–9.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Inker LA, Eckfeldt J, Levey AS, Leiendecker-Foster C, Rynders G, Manzi J, Waheed S, Coresh J. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis. 2011;58(4):682–4.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children-a meta-analysis. Clin Biochem. 2007;40(5–6):383–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, Larsson A, Bökenkamp A, Yasuda Y, Blufpand H, Lindström V, Zegers I, Althaus H, Blirup-Jensen S, Itoh Y, Sjöström P, Nordin G, Christensson A, Klima H, Sunde K, Hjort-Christensen P, Armbruster D, Ferrero C. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem. 2014;60(7):974–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Levey AS, Greene T, Schluchter MD, et al. Glomerular filtration rate measurements in clinical trials. modification of diet in renal disease study group and the diabetes control and complications trial research group. J Am Soc Nephrol. 1993;4(5):1159–71.PubMedCentralPubMedGoogle Scholar
  29. 29.
    De Sadeleer C, Van Laere K, Georges B, Piepsz A, Ham HR. Influence of time interval and number of blood samples on the error in renal clearance determination using a mono-exponential model: a monte carlo simulation. Nucl Med Commun. 2000;21(8):741–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Brochner-Mortensen J, Rodbro P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest. 1976;36(1):35–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med. 2011;52(8):1240–51.PubMedGoogle Scholar
  32. 32.
    Rehling M, Nielsen LE, Marqversen J. Protein binding of 99Tcm-DTPA compared with other GFR tracers. Nucl Med Commun. 2001;22(6):617–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Gordon I, Piepsz A, Sixt R, Auspices of Paediatric Committee of European Association of Nuclear Medicine. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging. 2011;38(6):1175–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Fleming JS. An improved equation for correcting slope-intercept measurements of glomerular filtration rate for the single exponential approximation. Nucl Med Commun. 2007;28(4):315–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Jodal L, Brochner-Mortensen J. Reassessment of a classical single injection 51Cr-EDTA clearance method for determination of renal function in children and adults. Part I: analytically correct relationship between total and one-pool clearance. Scand J Clin Lab Invest. 2009;69(3):305–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Ham HR, Piepsz A. Estimation of glomerular filtration rate in infants and in children using a single-plasma sample method. J Nucl Med. 1991;32(6):1294–7.PubMedGoogle Scholar
  37. 37.
    Ham HR, De Sadeleer C, Hall M, Piepsz A. Which single blood sample method should be used to estimate 51Cr-EDTA clearance in adolescents? Nucl Med Commun. 2004;25(2):155–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25(11):2321–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Ng DK, Schwartz GJ, Jacobson LP, Palella FJ, Margolick JB, Warady BA, Furth SL, Muñoz A. Universal GFR determination based on two time points during plasma iohexol disappearance. Kidney Int. 2011;80(4):423–30.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111:1416–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics. 2000;105:1242–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Houser MT, Jahn MF, Kobayashi A, Walburn J. Assessment of urinary protein excretion in the adolescent: effect of body position and exercise. J Pediatr. 1986;109:556–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Morcos SK, el-Nahas AM, Brown P, Haylor J. Effect of iodinated water soluble contrast media on urinary protein assays. BMJ. 1992;305:29.1.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Trachtenberg F, Barregard L. The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis. 2007;50:938–45.CrossRefPubMedGoogle Scholar
  45. 45.
    Goldstein SL. Acute kidney injury biomarkers: renal angina and the need for a renal troponin I. BMC Med. 2011;9:135.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Ronco C, Legrand M, Goldstein SL, Hur M, Tran N, Howell EC, Cantaluppi V, Cruz DN, Damman K, Bagshaw SM, Di Somma S, Lewington A. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–85.CrossRefPubMedGoogle Scholar
  47. 47.
    Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3(3):665–73.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant. 2013;28(9):2228–36.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Friedman AL. Urinalysis: oft obtained, oft ignored. Contemp Pediatr. 1991;8:31–51.PubMedGoogle Scholar
  51. 51.
    Huicho L, Campos-Sanchez M, Alano C. Meta-analysis of urine screening tests for determining the risk of urinary tract infection in children. Pediatr Infect Dis J. 2002;21:1–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Linshaw MA, Gruskin AB. The routine urinalysis: to keep or not to keep: that is the question. Pediatrics. 1997;100:1031–2.CrossRefPubMedGoogle Scholar
  53. 53.
    Fassett RG, Horgan B, Mathew TH. The detection of glomerular bleeding by phase contrast microscopy. Lancet. 1982;1:1432–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Arvind B, Anurag B, Shina M. Approach to renal tubular disorders. Indian J Pediatr. 2005;72(9):771–6.CrossRefGoogle Scholar
  55. 55.
    Delaney MP, Price CP, Lamb EJ. Kidney disease. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. London: Elsevier/Saunders; 2012. p. 1523–607.CrossRefGoogle Scholar
  56. 56.
    Fahimi D, Mohajeri S, Hajizadeh N, et al. Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr Nephrol. 2009;24(12):2409–12.CrossRefPubMedGoogle Scholar
  57. 57.
    Gotfried J, Wiesen J, Raina R, Nally Jr JV. Finding the cause of acute kidney injury: which index of fractional excretion is better? Cleve Clin J Med. 2012;79(2):121–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Srivastava T, Schwaderer A. Diagnosis and management of hypercalciuria in children. Curr Opin Pediatr. 2009;21(2):214–19.CrossRefPubMedGoogle Scholar
  59. 59.
    Alconcher LF, Castro C, Quintana D, et al. Urinary calcium excretion in healthy school children. Pediatr Nephrol. 1997;11:186–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Foley KF, Boccuzzi L. Urine calcium: laboratory measurement and clinical utility. Lab Med. 2010;41(11):683–6.CrossRefGoogle Scholar
  61. 61.
    Escobar L, Mejía N, Gil H, Santos F. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion. Nefrologia. 2013;33(3):289–96.PubMedGoogle Scholar
  62. 62.
    Sevgi M, Erkin S. Quantification of hypercalciuria with the urine calcium osmolality ratio in children. Pediatr Nephrol. 2005;20(11):1562–5.CrossRefGoogle Scholar
  63. 63.
    Cole DEC, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000;11:1937–47.PubMedGoogle Scholar
  64. 64.
    Bangert SK, Lapsley M. Renal tubular disorders and renal stone disease. In: Marshall W, Bangert SK, editors. Clinical biochemistry-metabolic and clinical aspects. 2nd ed. London: Churchill/Livingston; 2008. p. 174–85.Google Scholar
  65. 65.
    Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403–7.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Shaw N, Wheeldon J, Brocklebank J. Indices of intact serum parathyroid hormone and renal excretion of calcium, phosphate and magnesium. Arch Dis Child. 1990;65:1208–11.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Calado J, Santer R, Rueff J. Effect of kidney disease on glucose handling (including genetic defects). Kidney Int Suppl. 2011;120:S7–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Bökenkamp A, Ludwig M. Disorders of the renal proximal tubule. Nephron Physiol. 2011;118(1):1–6.CrossRefGoogle Scholar
  69. 69.
    Sirac C, Bridoux F, Essig M, Devuyst O, Touchard G, Cogné M. Toward understanding renal Fanconi syndrome: step by step advances through experimental models. Contrib Nephrol. 2011;169:247–61.CrossRefPubMedGoogle Scholar
  70. 70.
    Duran N. Amino acids. In: Blau N, Duran M, Gibson KM, editors. Laboratory guide to the methods in biochemical genetics. Berlin: Springer; 2008. p. 53–89.CrossRefGoogle Scholar
  71. 71.
    Choi MJ, Ziyadeh FN. The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19(3):424–6.CrossRefPubMedGoogle Scholar
  72. 72.
    West ML, Marsden PA, Richardson RM, Zettle RM, Halperin ML. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab. 1986;12(4):234–8.PubMedGoogle Scholar
  73. 73.
    Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27:4273–87.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Meerkin M, et al. Section II general clinical tests. In: Wu AHB, editor. Tietz clinical guide to laboratory tests. 4th ed. St. Louis: Saunders/Elsevier; 2006. p. 32–1202.Google Scholar
  75. 75.
    Sulyok E, Guignard JP. Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate. 1990;57:98–106.CrossRefPubMedGoogle Scholar
  76. 76.
    Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27(1):42–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Halperin ML, Kamel KS, Goldstein MB. Tools to use to diagnose acid-base disorders. In: Halperin ML, Kamel KS, Goldstein MB, editors. Fluid, electrolyte, and acid-base physiology-a problem-based approach. 4th ed. Philadelphia: Saunders; 2010. p. 39–59.CrossRefGoogle Scholar
  78. 78.
    García Nieto V, Monge M, Hernández Hernández L, Callejón A, Yanes MI, García Rodríguez VE. Study of the renal acidification capacity in children diagnosed of idiopathic hypercalciuria. Nefrologia. 2003;23:219–24.PubMedGoogle Scholar
  79. 79.
    Batlle DC. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 1986;30:546–54.CrossRefPubMedGoogle Scholar
  80. 80.
    Viljoen A, Norden AGW, Karet FE. Replacing the short ammonium chloride test. Kidney Int. 2007;72:1163.CrossRefPubMedGoogle Scholar
  81. 81.
    Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71:1310–16.CrossRefPubMedGoogle Scholar
  82. 82.
    Lamb E, Newman DJ, Price CP. Kidney function tests. In: Burtis A, Ashwood ER, Bruns D, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. St. Louis: Elsevier/Saunders; 2006. p. 805–7.Google Scholar
  83. 83.
    Stiburkova B, Bleyer AJ. Changes in serum urate and urate excretion with age. Adv Chronic Kidney Dis. 2012;19(6):372–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Stapleton FB, Linshaw MA, Hassanein K, et al. Uric acid excretion in normal children. J Pediatr. 1978;92:911–14.CrossRefPubMedGoogle Scholar
  85. 85.
    DeSanto NG, Di Iorio B, Capasso G, et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (Southern Italy). Pediatr Nephrol. 1992;6:149–57.CrossRefGoogle Scholar
  86. 86.
    Norman ME, Feldman NI, Cohn RM, et al. Urinary citrate excretion in the diagnosis of distal tubular acidosis. J Pediatr. 1978;82:394–400.CrossRefGoogle Scholar
  87. 87.
    Saborio P, Tipton GA, Chan JC. Diabetes insipidus. Pediatr Rev. 2000;21:122–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Mishra G, Chandrashekhar SR. Management of diabetes insipidus in children. Indian J Endocrinol Metab. 2011;15(7):180–7.CrossRefGoogle Scholar
  89. 89.
    Fenske W, Allolio B. Current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J Clin Endocrinol Metab. 2012;97(10):3426–37.CrossRefPubMedGoogle Scholar
  90. 90.
    Shimura N. Urinary arginine vasopressin (AVP) measurement in children: water deprivation test incorporating urinary AVP. Acta Paediatr Jpn. 1993;35(4):320–4.CrossRefPubMedGoogle Scholar
  91. 91.
    Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–19.CrossRefPubMedGoogle Scholar
  92. 92.
    Fenske W, Quinkler M, Lorenz D, Zopf K, Haagen U, Papassotiriou J, Pfeiffer AF, Fassnacht M, Störk S, Allolio B. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome – revisiting the direct and indirect water deprivation tests. J Clin Endocrinol Metab. 2011;96:1506–15.CrossRefPubMedGoogle Scholar
  93. 93.
    Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev. 2005;26:78–113.CrossRefPubMedGoogle Scholar
  94. 94.
    Lepage R, Roy L, Brossard JH, Rousseau L, Dorais C, Lazure C, D’Amour P. A non-(1-84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem. 1998;44:805–9.PubMedGoogle Scholar
  95. 95.
    Savoca R, Bock A, Kraenzlin ME, Schmid HR, Huber AR. An automated ‘bio-intact’ PTH assay: a step towards standardisation and improved correlation with parathyroid function in renal disease. Clin Chim Acta. 2004;343:167–71.CrossRefPubMedGoogle Scholar
  96. 96.
    Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL. Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1-84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res. 2001;16:605–14.CrossRefPubMedGoogle Scholar
  97. 97.
    Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med. 2006;36(1):16–35.CrossRefPubMedGoogle Scholar
  98. 98.
    Winter EW. Urine protein electrophoresis. In: Harris NS, Winter EW, editors. Multiple myeloma and relate serum protein disorders – an electrophoretic guide. 1st ed. New York: DemosMedical; 2012. p. 83–116.Google Scholar
  99. 99.
    Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, van Velzen J; Paediatric Committee of the European Association of Nuclear Medicine. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28(3):BP31–6.PubMedGoogle Scholar
  100. 100.
    Cavalier E, Daly AF, Betea D, Pruteanu-Apetrii PN, Delanaye P, Stubbs P, Bradwell AR, Chapelle JP, Beckers A. The ratio of parathyroid hormone as measured by third- and second-generation assays as a marker for parathyroid carcinoma. J Clin Endocrinol Metab. 2010; 95(8):3745–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • George van der Watt
    • 1
    Email author
  • Fierdoz Omar
    • 1
  • Anita Brink
    • 2
  • Mignon McCulloch
    • 3
  1. 1.Chemical PathologyUniversity of Cape Town and National Health Laboratory Service, Red Cross Children’s Hospital and Groote Schuur HospitalCape TownSouth africa
  2. 2.Department of Pediatrics and Child Health (Nuclear Medicine)University of Cape Town, Red Cross War Memorial Children’s HospitalCape TownSouth africa
  3. 3.Department of Paediatric Intensive Care/NephrologyUniversity of Cape Town, Red Cross War Memorial Children’s HospitalCape TownSouth africa

Personalised recommendations