Metabolism of Infants and Children

  • Faraz A. KhanEmail author
  • Jeremy G. Fisher
  • Eric A. Sparks
  • Tom Jaksic
Reference work entry


Despite advances in the field of nutrition, prevalence of malnutrition remains strikingly high in hospitalized patients particularly those with protracted illness. Appropriate nutritional intervention following any metabolic stress is predicated upon an understanding of the profound, yet predictable, alteration in metabolism. The primary aim of these interventions is to augment the short-term benefits of the pediatric metabolic response to insult or injury while minimizing any long-term consequences. The metabolic state following insult or injury progresses through two predictable stages: an initial hypometabolic “ebb phase,” followed quickly by a prolonged increase in overall metabolic rate called the “flow phase.” Quantification of energy requirements is an important first step in the design of appropriate nutritional strategies, as dietary regimens that both underestimate and overestimate energy needs are associated with injurious consequences. Pediatric patients additionally have several key differences as compared to adults in terms of available metabolic reserves, baseline energy, and substrate requirements. The metabolic stress response leads to enhanced protein, glucose, and lipid turn over to provide energy and substrate needed for healing and recovery. This enhanced substrate turnover is beneficial in the short-term, but the consequences of sustained catabolism may be quite rapidly deleterious in children. While this substrate breakdown cannot be completely reversed, knowledge of the key differences in the pediatric metabolic stress response can help design nutritional regimens, which can mitigate the deleterious effects associated with sustained catabolism to a large extent by appropriate provision of energy and nutritional substrates.


Catabolism Metabolic response Macronutrient Energy expenditure 


  1. Agus MS, Javid PJ, Piper HG, Wypij D, Duggan CP, Ryan DP, Jaksic T. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244(4):536–44.PubMedPubMedCentralGoogle Scholar
  2. Agus MS, Steil GM, Wypij D, SPECS Study Investigators, et al. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367(13):1208–19.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anez-Bustillos L, Dao DT, Baker MA, Fell GL, Puder M, Gura KM. Intravenous fat emulsion formulations for the adult and pediatric patient: understanding the differences. Nutr Clin Pract. 2016;31(5):596–609. Scholar
  4. Baker J, Detsky A, Wesson D. Nutritional assessment: a comparison of clinical judgement and objective measurements. N Engl J Med. 1982;306(16):969–72.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bartlett RH, Dechert RE, Mault JR, Ferguson SK, Kaiser AM, Erlandson EE. Measurement of metabolism in multiple organ failure. Surgery. 1982;92(4):771.PubMedPubMedCentralGoogle Scholar
  6. Beaufrere B. Protein turnover in low-birth-weight (LBW) infants. Acta Paediatr. 1994;83(s405):86–92.CrossRefGoogle Scholar
  7. Birkhahn RH, Long CL, Fitkin DL, Busnardo AC, Geiger JW, Blakemore WS. A comparison of the effects of skeletal trauma and surgery on the ketosis of starvation in man. J Trauma. 1981;21(7):513–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Carter BA, Taylor OA, Prendergast DR, Zimmerman TL, Von Furstenberg R, Moore DD, Karpen SJ. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res. 2007;62(3):301–6. Scholar
  9. Chwals WJ. Overfeeding the critically ill child: fact or fantasy? New Horiz. 1994;2(2):147.PubMedPubMedCentralGoogle Scholar
  10. Chwals WJ, Letton RW, Jamie A, Charles B. Stratification of injury severity using energy expenditure response in surgical infants. J Pediatr Surg. 1995;30(8):1161–4.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Covelli HD, Black JW, Olsen MS, Beekman JF. Respiratory failure precipitated by high carbohydrate loads. Ann Intern Med. 1981;95(5):579–81.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cuthbertson DP. Post-shock metabolic response. Lancet. 1942;1:433–7.CrossRefGoogle Scholar
  13. Cuthbertson D. Intensive-care-metabolic response to injury. Br J Surg. 1970;57:718–21.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FA. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics (Sao Paulo). 2008;63(3):357–62.CrossRefGoogle Scholar
  15. Denne SC, Karn CA, Ahlrichs JA, Dorotheo AR, Wang J, Liechty EA. Proteolysis and phenylalanine hydroxylation in response to parenteral nutrition in extremely premature and normal newborns. J Clin Invest. 1996;97(3):746.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Felig P. The glucose-alanine cycle. Metabolism. 1973;22(2):179–207.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr. 1976;29(12):1359–66.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Freeman J, Goldmann DA, Smith NE, Sidebottom DG, Epstein MF, Platt R. Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units. N Engl J Med. 1990;323(5):301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Friedman Z, Danon A, Stahlman MT, Oates JA. Rapid onset of essential fatty acid deficiency in the newborn. Pediatrics. 1976;58(5):640–9.PubMedPubMedCentralGoogle Scholar
  21. Giovannini M, Riva E, Agostoni C. Fatty acids in pediatric nutrition. Pediatr Clin N Am. 1995;42(4):861.CrossRefGoogle Scholar
  22. Griffiths RD, Jones C, Palmer TE. Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition. 1997;13(4):295–302.PubMedPubMedCentralGoogle Scholar
  23. Heyland D, Muscedere J, Wischmeyer PE, Canadian Critical Care Trials Group, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hulst JM, van Goudoever JB, Zimmermann LJ, Hop WC, Büller HA, Tibboel D, Joosten KF. Adequate feeding and the usefulness of the respiratory quotient in critically ill children. Nutrition. 2005;21(2):192–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Institute of Medicine (US). Panel on Macronutrients, & Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Natl Acad Pr; 2005;1.Google Scholar
  26. Joosten KF, Verhoeven JJ, Hazelzet JA. Energy expenditure and substrate utilization in mechanically ventilated children. Nutrition. 1999;15(6):444–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Long CL, Spencer JL, Kinney JM, Geiger JW. Carbohydrate metabolism in man: effect of elective operations and major injury. J Appl Physiol. 1971;31(1):110–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Long CL, Kinney JM, Geiger JW. Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism. 1976;25(2):193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Manley BJ, Makrides M, Collins CT, DINO Steering Committee, et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics. 2011;128(1):e71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. McClave SA, Snider HL. Invited review: use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 1992;7(5):207–21.PubMedCrossRefPubMedCentralGoogle Scholar
  31. McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27(1):21–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mehta NM, Compher C. ASPEN clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 1997;33(3):260–76.CrossRefGoogle Scholar
  33. Mehta N, Jaksic T. Nutritional support of the pediatric patient. In: Holcomb 3rd GW, Murphy JP, Ostlie DJ, editors. Ashcraft’s pediatric surgery. 5th ed. Philadelphia: Saunders Elsevier; 2010. p. 19–31.CrossRefGoogle Scholar
  34. Mehta NM, Bechard LJ, Leavitt K, Duggan C. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32(3):281–4.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Nandivada P, Fell GL, Mitchell PD, Potemkin AK, O’Loughlin AA, Gura KM, Puder M. Long-term fish oil lipid emulsion use in children with intestinal failure-associated liver disease. JPEN J Parenter Enteral Nutr. 2017;41(6):930–937.PubMedCrossRefPubMedCentralGoogle Scholar
  36. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  37. Nordenström J, Carpentier YA, Askanazi J, Robin AP, Elwyn DH, Hensle TW, Kinney JM. Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg. 1982;196(2):221.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Pham TN, Warren AJ, Phan HH, Molitor F, Greenhalgh DG, Palmieri TL. Impact of tight glycemic control in severely burned children. J Trauma. 2005;59(5):1148–54.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Effect of major abdominal operations on energy and protein metabolism in infants and children. J Pediatr Surg. 1998;33(1):49–53.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Reichman B, Chessex P, Verellen G, Putet G, Smith JM, Heim T, Swyer PR. Dietary composition and macronutrient storage in preterm infants. Pediatrics. 1983;72(3):322–8.PubMedPubMedCentralGoogle Scholar
  41. Schoeller DA, Hnilicka JM. Reliability of the doubly labeled water method for the measurement of total daily energy expenditure in free-living subjects. J Nutr. 1996;126(1):348S.PubMedPubMedCentralGoogle Scholar
  42. Schoenheimer R, Rittenberg D. Deuterium as an indicator in the study of intermediary metabolism. Science. 1935;82:156–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Seale JL, Rumpler WV. Comparison of energy expenditure measurements by diet records, energy intake balance, doubly labeled water and room calorimetry. Eur J ClinNutr. 1997;51:856–63.CrossRefGoogle Scholar
  44. Shew SB, Keshen TH, Jahoor F, Jaksic T. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg. 1999;34(7):1086–90.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Srinivasan V, Spinella PC, Drott HR, Roth CL, Helfaer MA, Nadkarni V. Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med. 2004;5(4):329–36.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Tappy L, Schwarz JM, Schneiter P, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998;26(5):860–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Van Aerde JE, Sauer PJ, Pencharz PB, Smith JM, Heim T, Swyer PR. Metabolic consequences of increasing energy intake by adding lipid to parenteral nutrition in full-term infants. Am J Clin Nutr. 1994;59(3):659–62.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Whyte RK, Haslam R, Vlainic C, et al. Energy balance and nitrogen balance in growing low birthweight infants fed human milk or formula. Pediatr Res. 1983;17(11):891–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults. JAMA. 2008;300(8):933–44.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Faraz A. Khan
    • 1
    Email author
  • Jeremy G. Fisher
    • 1
  • Eric A. Sparks
    • 1
  • Tom Jaksic
    • 1
  1. 1.Center for Advanced Intestinal Rehabilitation, Department of SurgeryBoston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations