Pediatric Cardiovascular Physiology

  • Albert P. RocchiniEmail author
  • Aaron G. DeWitt
Reference work entry


Knowledge of cardiovascular physiology is critical for the perioperative management of all pediatric surgical patients. The purpose of the cardiovascular system is to deliver oxygen to the tissues. Adequate oxygen delivery is determined by oxygen content of the blood and cardiac output. The latter is determined by preload, afterload, contractility, and heart rate. As in adults, these four factors interact with each other in a complex fashion. However, there are specific age-related differences in how changes in these variables affect the performance of the heart of a fetus, neonate, or older child. Perturbations in normal age-related cardiovascular physiology, as is seen patients with unrepaired, repaired, and palliated congenital heart disease, is common in pediatric surgical patients.


Preload Contractility Afterload Oxygen transport Heart rate Cardiac output Congenital heart disease Heart failure Cyanosis 


  1. Allen HD, Driscoll DJ, Shaddy RE, Feltes TF. Moss & Adams’ heart disease in infants, children, and adolescents. 8th ed. Baltimore: Williams and Wilkins; 2013.Google Scholar
  2. Almond CS, Morales DL, Blackstone EH, Turrentine MW, Imamura M, Massicotte MP, et al. Berlin heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127(16):1702–11.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson PA, Manring A, Glick KL, Crenshaw Jr CC. Biophysics of the developing heart. III. A comparison of the left ventricular dynamics of the fetal and neonatal lamb heart. Am J Obstet Gynecol. 1982;143(2):195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anderson PA, Glick KL, Killam AP, Mainwaring RD. The effect of heart rate on in utero left ventricular output in the fetal sheep. J Physiol. 1986;372:557–73.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Artman M, Graham Jr TP. Guidelines for vasodilator therapy of congestive heart failure in infants and children. Am Heart J. 1987;113(4):994–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Assali NS, Johnson GH, Brinkman 3rd CR, Kirschbaum TH. Control of pulmonary and systemic vasomotor tone in the fetus and neonate. Am J Obstet Gynecol. 1970;108(5):761–72.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Atkins DL, Kerber RE. Pediatric defibrillation: current flow is improved by using “adult” electrode paddles. Pediatrics. 1994;94(1):90–3.PubMedPubMedCentralGoogle Scholar
  8. Beekman RH, Rocchini AP, Dick 2nd M, Crowley DC, Rosenthal A. Vasodilator therapy in children: acute and chronic effects in children with left ventricular dysfunction or mitral regurgitation. Pediatrics. 1984;73(1):43–51.PubMedPubMedCentralGoogle Scholar
  9. Bengur AR, Beekman RH, Rocchini AP, Crowley DC, Schork MA, Rosenthal A. Acute hemodynamic effects of captopril in children with a congestive or restrictive cardiomyopathy. Circulation. 1991;83(2):523–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bhatt-Mehta V, Nahata MC. Dopamine and dobutamine in pediatric therapy. Pharmacotherapy. 1989;9(5):303–14.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123(9):1010–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bruns LA, Chrisant MK, Lamour JM, Shaddy RE, Pahl E, Blume ED, et al. Carvedilol as therapy in pediatric heart failure: an initial multicenter experience. J Pediatr. 2001;138(4):505–11.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chatterjee K. Congestive heart failure: what should be the initial therapy and why? Am J Cardiovasc Drugs. 2002;2(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Crosson JE, Etheridge SP, Milstein S, Hesslein PS, Dunnigan A. Therapeutic and diagnostic utility of adenosine during tachycardia evaluation in children. Am J Cardiol. 1994;74(2):155–60.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dawes GS, Mott JC, Widdicombe JG. The foetal circulation in the lamb. J Physiol. 1954;126(3):563–87.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dick 2nd M, Scott WA, Serwer GS, Bromberg BI, Beekman RH, Rocchini AP, et al. Acute termination of supraventricular tachyarrhythmias in children by transesophageal atrial pacing. Am J Cardiol. 1988;61(11):925–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Efrati O, Modan-Moses D, Vardi A, Matok I, Bazilay Z, Paret G. Intravenous arginine vasopressin in critically ill children: is it beneficial? Shock. 2004;22(3):213–7.PubMedCrossRefGoogle Scholar
  18. Eichhorn EJ. The paradox of beta-adrenergic blockade for the management of congestive heart failure. Am J Med. 1992;92(5):527–38.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Epstein ML, Kiel EA, Victorica BE. Cardiac decompensation following verapamil therapy in infants with supraventricular tachycardia. Pediatrics. 1985;75(4):737–40.PubMedGoogle Scholar
  20. Fabiato A. Appraisal of the physiological relevance of two hypothesis for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge-coupled release. Mol Cell Biochem. 1989;89(2):135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ferguson DW, Berg WJ, Sanders JS, Roach PJ, Kempf JS, Kienzle MG. Sympathoinhibitory responses to digitalis glycosides in heart failure patients. Direct evidence from sympathetic neural recordings. Circulation. 1989;80(1):65–77.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Figa FH, Gow RM, Hamilton RM, Freedom RM. Clinical efficacy and safety of intravenous amiodarone in infants and children. Am J Cardiol. 1994;74(6):573–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26(3):240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15(1):87–111.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gajarski RJ, Mosca RS, Ohye RG, Bove EL, Crowley DC, Custer JR, et al. Use of extracorporeal life support as a bridge to pediatric cardiac transplantation. J Heart Lung Transplant. 2003;22(1):28–34.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gonzalez A, Lopez B, Diez J. Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am. 2004;88(1):83–97.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia: Elsevier; 2012.Google Scholar
  28. Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MR, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials. 2016;103:278–92.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hoffman J, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR. Foramen ovale: an ultrasonographic study of its relation to the inferior vena cava, ductus venosus and hepatic veins. Ultrasound Obstet Gynecol. 1992;2(6):389–96.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lewis AB, Chabot M. The effect of treatment with angiotensin-converting enzyme inhibitors on survival of pediatric patients with dilated cardiomyopathy. Pediatr Cardiol. 1993;14(1):9–12.PubMedPubMedCentralGoogle Scholar
  32. Litsey SE, Noonan JA, O’Connor WN, Cottrill CM, Mitchell B. Maternal connective tissue disease and congenital heart block. Demonstration of immunoglobulin in cardiac tissue. N Engl J Med. 1985;312(2):98–100.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lofland GK. The enhancement of hemodynamic performance in Fontan circulation using pain free spontaneous ventilation. Eur J Cardiothorac Surg. 2001;20(1):114–8; discussion 118–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Meyer S, Gortner L, Brown K, Abdul-Khaliq H. The role of milrinone in children with cardiovascular compromise: review of the literature. Wien Med Wochenschr. 2011;161(7–8):184–91.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Cecchini V, et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13(4):R130.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Parr GV, Blackstone EH, Kirklin JW. Cardiac performance and mortality early after intracardiac surgery in infants and young children. Circulation. 1975;51(5):867–74.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA. Biomechanical conditioning of tissue engineered heart valves: too much of a good thing? Adv Drug Deliv Rev. 2016;96:161–75.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Perry JC, Fenrich AL, Hulse JE, Triedman JK, Friedman RA, Lamberti JJ. Pediatric use of intravenous amiodarone: efficacy and safety in critically ill patients from a multicenter protocol. J Am Coll Cardiol. 1996;27(5):1246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Pinson CW, Morton MJ, Thornburg KL. An anatomic basis for fetal right ventricular dominance and arterial pressure sensitivity. J Dev Physiol. 1987;9(3):253–69.PubMedPubMedCentralGoogle Scholar
  40. Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med. 1985;13(6):454–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ramsey-Goldman R, Hom D, Deng JS, Ziegler GC, Kahl LE, Steen VD, et al. Anti-SS-A antibodies and fetal outcome in maternal systemic lupus erythematosus. Arthritis Rheum. 1986;29(10):1269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Reller MD, Morton MJ, Reid DL, Thornburg KL. Fetal lamb ventricles respond differently to filling and arterial pressures and to in utero ventilation. Pediatr Res. 1987;22(6):621–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Rudolph AM. The fetal circulation and its adjustments after birth. In: Moller JH, Hoffmann JIE, editors. Pediatric cardiovascular medicine. Philadelphia: Churchill Livingstone; 2000. p. 60–4.Google Scholar
  44. Rudolph AM, Heymann MA. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967;21(2):163–84.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Rusconi P, Gomez-Marin O, Rossique-Gonzalez M, Redha E, Marin JR, Lon-Young M, et al. Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. J Heart Lung Transplant. 2004;23(7):832–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13(4):223–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Starling EH. The Lincare lecture on the law of the heart (Cambridge1915). London: Longmans, Green; 1915.Google Scholar
  48. Stern H, Weil J, Genz T, Vogt W, Buhlmeyer K. Captopril in children with dilated cardiomyopathy: acute and long-term effects in a prospective study of hemodynamic and hormonal effects. Pediatr Cardiol. 1990;11(1):22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Thornburg KL, Morton MJ. Filling and arterial pressures as determinants of left ventricular stroke volume in fetal lambs. Am J Phys. 1986;251(5 Pt 2):H961–8.Google Scholar
  50. Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 1995;267(5206):1997–2000.PubMedPubMedCentralCrossRefGoogle Scholar
  51. West JB. Respiratory physiology: the essentials. Baltimore: Williams and Wilkins; 1974.Google Scholar
  52. Williams DB, Kiernan PD, Metke MP, Marsh HM, Danielson GK. Hemodynamic response to positive end-expiratory pressure following right atrium-pulmonary artery bypass (Fontan procedure). J Thorac Cardiovasc Surg. 1984;87(6):856–61.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pediatric and Communicable DiseasesC.S. Mott Children’s Hospital, Congenital Heart Center, University of MichiganAnn ArborUSA

Personalised recommendations