Pediatric Respiratory Physiology

  • Bettina BohnhorstEmail author
  • Corinna Peter
Reference work entry


This chapter provides information about structural and biochemical lung development, which starts as early as the fifth week of gestational age but can last up to 4 years postnatally. During the intrauterine period, fetal breathing movements and lung fluid are essential factors for regular lung maturation and growth. Transition from intrauterine to extrauterine life is a critical phase, during which clearance of lung fluid and lung expansion due to air filling on the one hand and establishment of pulmonary blood flow due to a marked reduction of pulmonary vascular resistance on the other hand are the key features of this process. In contrast to older infants and adults, respiratory physiology of neonates is characterized by a relatively small airway diameter enhancing airway resistance, a higher chest wall compliance, and weakness of respiratory muscles, making the newborn much more vulnerable to respiratory failure. Dysfunctional transition may result in respiratory distress and persistent pulmonary hypertension, both of them still being important causes of morbidity and mortality. Their present-day management includes prenatal steroid treatment, intratracheal surfactant application, mechanical ventilation, and a differentiated medical therapy.


Lung development Surfactant system Transition to extrauterine life Neonatal respiratory physiology Respiratory distress Pulmonary hypertension 


  1. Abu-Shaweesh JM. Maturation of respiratory reflex responses in the fetus and neonate. Semin Neonatol. 2004;9:169–80.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Boddy K, Mantell CD. Observations of fetal breathing movements transmitted through maternal abdominal wall. Lancet. 1972;2:1219–20.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Darnall RA. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173:201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Dawes GS. Breathing before birth in animals and man. An essay in developmental medicine. New Engl J Med. 1974;290(10):557–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Dawson JA, Kamlin COF, Vento M, Wong C, Cole TJ, Donath SM, Davis PG, Morley CJ. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010;125(6):e1340–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. de Vries JIP, Visser GHA, Prechtl HFR. Fetal behaviour in early pregnancy. Eur J Obstet Gynecol Reprod Biol. 1986;21(5–6):271–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Dhillon R. The management of neonatal pulmonary hypertension. Arch Dis Child Fetal Neonatal Ed. 2012;97(3):F223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, Ferrelli K, O Orell J, Soll RF, Vermont Oxford Network DRM Study Group. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128:e1069–76.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Florido J, Cortes E, Gutierrez M, Soto VM, Miranda MT, Navarrete L. Analysis of fetal breathing movements at 30–38 weeks of gestation. J Perinat Med. 2005;33(1):38–41.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:55–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1291–335.CrossRefGoogle Scholar
  12. Greer JJ, Funk GD, Ballanyi K. Preparing for the first breath: prenatal maturation of respiratory control. J Physiol. 2006;570(Pt3):437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Haagsman HP, van Golde LMG. Synthesis and assembly of lung surfactant. Annu Rev Physiol. 1991;53:441–64.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Hall SM, Haworth SG. Conducting pulmonary arteries: structural adaptation to extrauterine life in the pig. Cardiovasc Res. 1987;21(3):208–16.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hallman M. The surfactant system protects both fetus and newborn. Neonatology. 2013;103(4):320–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Harding R, Hooper SB. Regulation of lung expansion and lung growth before birth. J Appl Physiol. 1996;81:209–24.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Inanlou MR, Baguma-Nibasheka M, Kablar B. The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol. 2005;20:1261–6.Google Scholar
  18. Jobe AH. What is RDS in 2012? Early Hum Dev. 2012;88(Suppl 2):S42–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kliegmann RM, Behrmann RE, Jenson HB, Stanton BF. Nelson Textbook of Pediatrics, 18th Edition, Chapter 101, Respiratory Tract Disorders, 731–741, Chapter 370, Respiratory System, 1719–1731, Saunders Elsevier, Philadelphia U.S.; 2007.Google Scholar
  20. Koeppen BM, Stanton BA. Physiology, Sixth Edition, Chapter 20, Structure and Function of the Respiratory System, 417–429, Berne&Levy, Mosby Elsevier, Maryland Heights, Missouri U.S.; 2008.Google Scholar
  21. Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn (PPHN). Pediatr Clin N Am. 2009;56(3):579–600.CrossRefGoogle Scholar
  22. Kribs A. How best to administer surfactant to VLBW infants? Arch Dis Child Fetal Neonatal Ed. 2011;96:F238–40.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kuipers IM, Maertzdorf WJ, De Jong DS, Hanson MA, Blanco CE. Initiation and maintenance of continuous breathing at birth. Pedtric Res. 1997;42(2):163–8.CrossRefGoogle Scholar
  24. Lakshminrusimha A, Steinhorn RH. Pulmonary vascular biology during neonatal transition. Clin Perinatol. 1999;26(39):601–19.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Mathew OP. Apnea of prematurity: pathogenesis and management strategies. J Perinatol. 2011;31:302–10.PubMedCrossRefPubMedCentralGoogle Scholar
  26. McCray PB, Bettencourt JD, Bastacky J. Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Phys. 1992;262(3 Pt 1):L270–9.Google Scholar
  27. McNamara PJ, Shivananda SP, Sahni M, Freeman D, Taddio A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr Crit Care Med. 2013;14(1):74–84.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mendelson CR, Boggaram V. Hormonal control of the surfactant system in fetal lung. Annu Rev Physiol. 1991;53:415–40.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. 2012;32(8):608–13.PubMedCrossRefPubMedCentralGoogle Scholar
  30. More K, Athalye-Jape GK, Rao SC, Patole SK. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. Cochrane Database Syst Rev. 2016;8:CD010531.Google Scholar
  31. Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8–23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. 1981;98(6):962–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Nicolaides KH, Economides DL, Soothill PW. Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;161(4):996–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Olver RE, Walters DV, Wilson SM. Developmental regulation of lung liquid transport. Annu Rev Physiol. 2004;66:77–101.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Orgeig S, Hiemstra PS, Veldhuizen EJA, Casals C, Clark HW, Haczku A, Knudsen L, Possmayer F. Recent advances in alveolar biology: evolution and function of alveolar proteins. Respir Physiol Neurobiol Mol Integr Physiol. 2010;173(Suppl):S43–54.CrossRefGoogle Scholar
  36. Orgeig S, Morrison JL, Daniels CB. Prenatal development of the pulmonary surfactant system and the influence of hypoxia. Respir Physiol Neurobiol. 2011;178(1):129–45.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Porta NFM, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol. 2012;39(1):149–64.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Roberts D, Dalzell SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.Google Scholar
  39. Ruano R, Yoshisaki CT, DA Silva MM, Ceccon MEJ, Grasi MS, Tannuri U, Zugaib M. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Saunders RA, Milner AD. Pulmonary pressure/volume relationships during the last phase of delivery and the first postnatal breaths in human subjects. J Pediatr. 1978;93(4):667–73.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, Davis PG, Tin W, Moddemann D, Solimano A, Ohlsson A, Barrington KJ, Roberts RS. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Steinhorn RH, Fineman J, Kusic-Pajic A, Cornelisse P, Gehin M, Nowbakht P, Pierce CM, Beghetti M, FUTURE-4 study investigators. Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial. J Pediatr. 2016;177:90–96.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sanchez PJ, O’Shea M, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID, Watterberg KL, Saha S, Das A, Higgins RD. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126:443–56.PubMedPubMedCentralCrossRefGoogle Scholar
  44. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010a;362:1970–9.PubMedCentralCrossRefGoogle Scholar
  45. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010b;362:1959–69.PubMedCentralCrossRefGoogle Scholar
  46. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, Saugstad OD, Simeoni U, Speer CP, Vento M, Halliday HL. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2013 update. Neonatology. 2013;103:353–68.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Te Pas AB, Davis PG, Hooper SB, Morley CJ. From liquid to air: breathing after birth. J Pediatr. 2008;152(5):607–11.CrossRefGoogle Scholar
  48. Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986;2(4):189–93.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pediatric Pulmonology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany

Personalised recommendations