Advertisement

Multiple Regression mit voneinander abhängigen Beobachtungen

Random-Effects und Fixed-Effects
  • Conrad ZillerEmail author
Living reference work entry

Latest version View entry history

Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Ein Großteil der in der empirisch-vergleichenden Politikwissenschaft verwendeten Datensätze ist räumlich und/oder zeitlich strukturiert. Räumliche und zeitliche Strukturen gehen in der Regel mit statistischen Abhängigkeiten einher, die bei der Datenanalyse mitberücksichtigt werden müssen. Dieser Beitrag stellt Random-Effects-Modelle (RE) und Fixed-Effects-Modelle (FE) als Analysemethoden für voneinander abhängige Beobachtungen vor. Dabei wird auf den Problemgegenstand eingegangen und die Anwendung von RE- und FE-Modellen erklärt. Darüber hinaus werden Entscheidungsheuristiken und Hinweise für die praktische Anwendung gegeben.

Schlüsselwörter

Random Effects Fixed Effects Panelanalyse Hybrid-Modelle Mehrebenenanalyse 

Literatur

  1. Allison, Paul D. 2009. Fixed effects regression models. Los Angeles: Sage.CrossRefGoogle Scholar
  2. Allison, Paul D., Richard Williams, und Enrique Moral-Benito. 2017. Maximum likelihood for cross-lagged panel models with fixed effects. Socius 3:1–17.Google Scholar
  3. Andreß, Hans-Jürgen, Katrin Golsch, und Alexander W. Schmidt. 2013. Applied panel data analysis for economic and social surveys. Heidelberg: Springer Science & Business Media.CrossRefGoogle Scholar
  4. Angrist, Joshua D., und Jörn-Steffen Pischke. 2009. Mostly harmless econometrics: An empiricist’s companion. Princeton/Oxford: Princeton University Press.Google Scholar
  5. Beck, Nathaniel, und Jonathan N. Katz. 1995. What to do (and not to do) with time-series cross-section data. American Political Science Review 89(3): 634–647.CrossRefGoogle Scholar
  6. Bellemare, Marc F., Takaaki Masaki, und Thomas B. Pepinsky. 2017. Lagged explanatory variables and the estimation of causal effect. The Journal of Politics 79(3): 949–963.CrossRefGoogle Scholar
  7. Bollen, Kenneth A. 1989. Structual equations with latent variables. New York: Wiley.Google Scholar
  8. Brüderl, Joself, und Volker Ludwig. 2015. Fixed-effects panel regression. In The SAGE handbook of regression analysis and causal inference, Hrsg. H. Best und C. Wolf, 327–357. Los Angeles: Sage.Google Scholar
  9. Bryan, Mark L., und Stephen P. Jenkins. 2016. Multilevel modelling of country effects: A cautionary tale. European Sociological Review 32(1): 3–22.CrossRefGoogle Scholar
  10. Cameron, A. Colin, und Douglas L. Miller. 2015. A practitioner’s guide to cluster-robust inference. Journal of Human Resources 50(2): 317–372.CrossRefGoogle Scholar
  11. Clark, Tom S., und Drew A. Linzer. 2015. Should I use fixed or random effects? Political Science Research and Methods 3(2): 399–408.CrossRefGoogle Scholar
  12. Curran, Patrick J., und Daniel J. Bauer. 2011. The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology 62:583–619.CrossRefGoogle Scholar
  13. Drukker, David M. 2003. Testing for serial correlation in linear panel-data models. Stata Journal 3(2): 168–177.Google Scholar
  14. Elff, Martin, Jand P. Heisig, Merlin Schaeffer, und Susumu Shikano. 2016. No need to turn Bayesian in multilevel analysis with few clusters: How frequentist methods provide unbiased estimates and accurate inference. Working Paper. https://doi.org/10.31235/osf.io/z65s4. Zugegriffen am 08.01.2018.
  15. Enders, Craig K., und Davood Tofighi. 2007. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods 12(2): 121.CrossRefGoogle Scholar
  16. Gelman, Andrew. 2005. Analysis of variance – Why it is more important than ever. The Annals of Statistics 33(1): 1–53.CrossRefGoogle Scholar
  17. Greene, William H. 2003. Econometric analysis, 5. Aufl. Upper Saddle River: Prentice Hall.Google Scholar
  18. Hakhverdian, Armen, und Quinton Mayne. 2012. Institutional trust, education, and corruption: A micro-macro interactive approach. The Journal of Politics 74(3): 739–750.CrossRefGoogle Scholar
  19. Hamaker, Ellen L., Rebecca M. Kuiper, und Raoul P. P. P. Grasman. 2015. A critique of the cross-lagged panel model. Psychological Methods 20(1): 102–116.CrossRefGoogle Scholar
  20. Hausman, Jerry A. 1978. Specification tests in econometrics. Econometrica: Journal of the Econometric Society 46(6): 1251–1271.CrossRefGoogle Scholar
  21. King, Gary, und Margaret E. Roberts. 2015. How robust standard errors expose methodological problems they do not fix, and what to do about it. Political Analysis 23(2): 159–179.CrossRefGoogle Scholar
  22. Lewis-Beck, Michael S., und Mary Stegmaier. 2000. Economic determinants of electoral outcomes. Annual Review of Political Science 3(1): 183–219.CrossRefGoogle Scholar
  23. Morgan, Stephen L., und Christopher Winship. 2007. Counterfactuals and causal analysis: Methods and principles for social research. Cambridge, UK: Harvard University Press.Google Scholar
  24. Moulton, Brent R. 1986. Random group effects and the precision of regression estimates. Journal of Econometrics 32(3): 385–397.CrossRefGoogle Scholar
  25. Rabe-Hesketh, Sophia, und Anders Skrondal. 2012. Multilevel and longitudinal modeling using Stata. College Station: Stata Press Publication.Google Scholar
  26. Schmidt-Catran, Alexander W., und Malcolm Fairbrother. 2016. The random effects in multilevel models: Getting them wrong and getting them right. European Sociological Review 32(1): 23–38.CrossRefGoogle Scholar
  27. Schmidt-Catran, Alexander W., und Dennis C. Spies. 2016. Immigration and welfare support in Germany. American Sociological Review 81(2): 242–261.CrossRefGoogle Scholar
  28. Snijders, Tom A. B., und Roel J. Bosker. 2012. Multilevel analysis. An introduction to basic and advanced multilevel modeling, 2. Aufl. Los Angeles: Sage.Google Scholar
  29. Stegmueller, Daniel. 2013. How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. American Journal of Political Science 57(3): 748–761.CrossRefGoogle Scholar
  30. Tilley, James, Anja Neundorf, und Sara Hobolt. 2018. When the pound in people’s pocket matters: How changes to personal financial circumstances affect party choice. The Journal of Politics 80(2): 555–569.CrossRefGoogle Scholar
  31. Vaisey, Stephen, und Andrew Miles. 2017. What you can – and can’t – do with three-wave panel data. Sociological Methods & Research 46(1): 44–67.CrossRefGoogle Scholar
  32. Van der Brug, Wouter, Cees Van der Eijk, und Mark Franklin. 2007. The economy and the vote: Economic conditions and elections in fifteen countries. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  33. Verbeek, Marno. 2004. A guide to modern econometrics. Chichester: Wiley.Google Scholar
  34. Wang, Lijuan Peggy, und Scott E. Maxwell. 2015. On disaggregating between-person and within-person effects with longitudinal data using multilevel models. Psychological Methods 20(1): 63–83.CrossRefGoogle Scholar
  35. Wooldridge, Jeffrey M. 2009. Introductory econometrics: A modern approach. Boston: Cengage Learning.Google Scholar
  36. Ziller, Conrad, und Marc Helbling. 2017. Antidiscrimination laws, policy knowledge, and political support. British Journal of Political Science. First View: 1–18.  https://doi.org/10.1017/S0007123417000163.
  37. Ziller, Conrad, und Thomas Schübel. 2015. „The pure people“ versus „the corrupt elite“? Political corruption, political trust and the success of radical right parties in Europe. Journal of Elections, Public Opinion and Parties 25(3): 368–386.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Universität zu KölnKölnDeutschland

Personalised recommendations