Anticipating the Effects of Marketing Communication: A Neuroeconomic Framework for Marketing Purposes

  • Steffen SchmidtEmail author
  • Klaus-Peter Wiedmann
  • Philipp Reiter
  • Christina Kurlbaum
Living reference work entry
Part of the Springer NachschlageWissen book series (SRW)


High expectations in neuroeconomics raised the hope of marketers that their (daily business) problems could be solved easily. In fact, neuroeconomics has provided considerable insights for marketing science and business practice concerning consumer decision making over the last two decades. However, tapping into customer’s black box of unconscious and automatic processes, so-called implicit processes, does not require the mandatory usage of advanced neuroimaging techniques, such as fMRI. In order to obtain a specific brand positioning in customer’s head, brand communication is an effective means for the marketing of ideas to gain a promoted cortical representation probability and, consequently, an enhanced perceptual and behavioral impact. The marketing of ideas itself is closely related to the concept of brand associations. Those types of associations can be assessed by implicit association measures from psychology (e.g., Implicit Association Test) comparatively accurately but are less properly measured with neuroimaging due to physiological and scientific fallibility. Against this background, the current work introduces a practical neuroscience-related brand communication framework incorporating explicit and implicit brand-related associations to provide guidance for serious marketing-related communication purposes. Moreover, the performance of the introduced conceptual model is tested. In detail, the presented case study demonstrated sufficient performance to detect associative branding change via a (short) communication contact. Specifically, the combined application of implicit, concretely an advanced latency-based tool, and explicit measures, concretely a conventional self-report, provides an integrated assessment of brand-related marketing efforts in general and brand communication activities in particular.


Implicit Measures Reaction Time Measurement Attention Tracking Neuroeconomics Brand Management 


  1. Aaker, J. L. (2000). Accessibility or diagnosticity? Disentangling the influence of culture on persuasion processes and attitudes. Journal of Consumer Research, 26(4), 340–357.CrossRefGoogle Scholar
  2. Aaker, D. A., Bagozzi, R. P., Carman, J. M., & MacLachlan, J. M. (1980). On using response latency to measure preference. Journal of Marketing Research, 17(2), 237–244.CrossRefGoogle Scholar
  3. Aguirre, G. K. (2014). Functional neuroimaging: Technical, logical, and social perspectives. Hastings Center Report, 44(2), 8–18.CrossRefGoogle Scholar
  4. Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284–292.CrossRefGoogle Scholar
  5. Baars, B. J., Ramsøy, T. Z., & Laureys, S. (2003). Brain, conscious experience and the observing self. Trends in Neurosciences, 26(12), 671–675.CrossRefGoogle Scholar
  6. Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118(2), 175–192.CrossRefGoogle Scholar
  7. Bartlett, M. S., Movellan, J. R., Littlewort, G. C., Braathen, B., Frank, M. G., & Sejnowski, T. J. (2005). Toward automatic recognition of spontaneous facial actions. In P. Ekman & E. L. Rosenberg (eds.), What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS) (2nd edition, pp. 393–412). New York: Oxford University Press.Google Scholar
  8. Bednarik, R., & Tukiainen, M. (2007). Validating the Restricted Focus Viewer: A study using eye-movement tracking. Behavior Research Methods, 39(2), 274–282.CrossRefGoogle Scholar
  9. Bennett, C. M., Baird, A. A., Miller, M. B., & Wolford, G. L. (2010). Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction. Journal of Serendipitous and Unexpected Results, 1(1), 1–5.Google Scholar
  10. Bernacer, J., & Murillo, J. I. (2014). The Aristotelian conception of habit and its contribution to human neuroscience. Frontiers in Human Neuroscience, 8, 1–10.CrossRefGoogle Scholar
  11. Bischof, N. (1975). A systems approach toward the functional connections of attachment and fear. Child Development, 46(4), 801–817.CrossRefGoogle Scholar
  12. Bischof, N. (1985). Das Rätsel Ödipus: Die biologischen Wurzeln des Urkonfliktes von Intimität und Autonomie. München: Piper.Google Scholar
  13. Bischof, N. (1990). Phase transitions in psychoemotional development. In H. Haken & M. Stadler (eds.), Synergetics of cognition, proceedings of the international symposium at Schloss Elmau, Bavaria, June 4–8 (pp. 361–378). Berlin: Springer.Google Scholar
  14. Bohner, G., & Dickel, N. (2011). Attitudes and attitude change. Annual Review of Psychology, 62(1), 391–417.CrossRefGoogle Scholar
  15. Bosson, J. K., Swann, W. B., & Pennebacker, J. W. (2000). Stalking the perfect measure of implicit self-esteem: The blind men and the elephant revisited? Journal of Personality and Social Psychology, 79(4), 631–643.CrossRefGoogle Scholar
  16. Bourgine, P. (2004). What is cognitive economics? In O. Bourgine & J.-P. Nadal (eds.), Cognitive economics: An interdisciplinary approach (pp. 1–12). Berlin: Springer.CrossRefGoogle Scholar
  17. Cacioppo, J. T., & Petty, R. E. (1984). The elaboration likelihood model of persuasion. In T. C. Kinnear (eds.), Advances in consumer research (Vol. 11 pp. 673–675). Provo: Association for Consumer Research.Google Scholar
  18. Cacioppo, J. T., Gardner, W. L., & Berntson, G. G. (1997). Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space. Personality and Social Psychology Review, 1(1), 3–25.CrossRefGoogle Scholar
  19. Chaiken, S. (1980). Heuristic versus systematic information processing and the use of source versus message cues in persuasion. Journal of Personality and Social Psychology, 39(5), 752–766.CrossRefGoogle Scholar
  20. Chicurel, M. (2000). Databasing the brain. Nature, 406, 822–825.CrossRefGoogle Scholar
  21. Choudhury, S., & Slaby, J. (2012). Introduction: Critical neuroscience – between lifeworld and laboratory. In S. Choudhury & J. Slaby (eds.), Critical neuroscience: A handbook of the social and cultural contexts of neuroscience (pp. 1–26). Chichester: Wiley-Blackwell.Google Scholar
  22. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New York: Avon Books.Google Scholar
  23. De Houwer, J. (2006). What are implicit measures and why are we using them? In R. W. Wiers & A. W. Stacy (eds.), Handbook of implicit cognition and addiction (pp. 11–28). Thousand Oaks: Sage.Google Scholar
  24. Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005a). Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15(2), 171–182.CrossRefGoogle Scholar
  25. Deppe, M., Schwindt, W., Krämer, J., Kugel, H., Plassmann, H., Kenning, P., & Ringelstein, E. B. (2005b). Evidence for a neural correlate of a framing effect: Bias-specific activity in the ventromedial prefrontal cortex during credibility judgments. Brain Research Bulletin, 67(5), 413–421.CrossRefGoogle Scholar
  26. Dijksterhuis, A. (2004). Think different: The merits of unconscious thought in preference development and decision making. Journal of Personality and Social Psychology, 87(5), 586–598.CrossRefGoogle Scholar
  27. European Research Council. (2013). ERC projects to unlock mysteries of the human brain. Accessed 21 Nov 2014.
  28. Evans, J. S. B. T. (1984). Heuristic and analytic processes in reasoning. British Journal of Psychology, 75(4), 451–468.CrossRefGoogle Scholar
  29. Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.CrossRefGoogle Scholar
  30. eye square. (2014). BrandREACT. Accessed 29 May 2014.
  31. Fazio, R. H. (1990). Multiple processes by which attitudes guide behavior: The MODE model as an integrative framework. In M. P. Zanna (eds.), Experimental social psychology (Vol. 23 pp. 75–109). San Diego: Academic Press.Google Scholar
  32. Fazio, R. H. (2007). Attitudes as object-evaluation associations of varying strength. Social Cognition, 25(5), 603–637.CrossRefGoogle Scholar
  33. Fitzsimons, G. M., Chartrand, T. L., & Fitzsimons, G. J. (2008). Automatic effects of brand exposure on motivated behavior: How apple makes you “think different”. Journal of Consumer Research, 35(1), 21–35.CrossRefGoogle Scholar
  34. Florack, A., Friese, M., & Scarabis, M. (2010). Regulatory focus and reliance on implicit preferences in consumption contexts. Journal of Consumer Psychology, 20(2), 193–204.CrossRefGoogle Scholar
  35. Frégnac, Y., & Laurent, G. (2014). Where is the brain in the Human Brain Project? Nature, 513, 27–29.CrossRefGoogle Scholar
  36. Graham, S., & Weiner, B. (1996). Theories and principles of motivation. In D. C. Berliner & R. C. Calfee (eds.), Handbook of educational psychology (pp. 63–84). New York: Simon & Schuster Macmillan.Google Scholar
  37. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480.CrossRefGoogle Scholar
  38. Greenwald, A. G., Rudman, L. A., Nosek, B. A., Banaji, M. R., Farnham, S. D., & Mellott, D. S. (2002). A unified theory of implicit attitudes, stereotypes, self-esteem, and self-concept. Psychological Review, 109(1), 3–25.CrossRefGoogle Scholar
  39. Gubler, H., & Bischof, N. (1991). A systems theory perspective. In M. E. Lamb & H. Keller (eds.), Infant development: Perspectives from German-speaking countries (pp. 35–66). Hillsdale: Erlbaum.Google Scholar
  40. Gutnik, L. A., Hakimzada, A. F., Yoskowitz, N. A., & Patel, V. L. (2006). The role of emotion in decision-making: A cognitive neuroeconomic approach towards understanding sexual risk behaviour. Journal of Biomedical Informatics, 39(6), 720–736.CrossRefGoogle Scholar
  41. Higgins, E. T. (1997). Beyond pleasure and pain. American Psychologist, 52(12), 1280–1300.CrossRefGoogle Scholar
  42. Hubert, M., & Kenning, P. (2008). A current overview of consumer neuroscience. Journal of Consumer Behaviour, 7(4–5), 272–292.CrossRefGoogle Scholar
  43. Interbrand (2014). Methodology. Accessed 07 Dec 2014.
  44. Jansen, A. R., Blackwell, A. F., & Marriott, K. (2003). A tool for tracking visual attention: The Restricted Focus Viewer. Behavior Research Methods, Instruments, & Computers, 35(1), 57–69.CrossRefGoogle Scholar
  45. Kable, J. W. (2011). The cognitive neuroscience toolkit for the neuroeconomist: A functional overview. Journal of Neuroscience, Psychology, and Economics, 4(2), 63–84.CrossRefGoogle Scholar
  46. Kahneman, D. (2003). A perspective on judgement and choice – Mapping bounded rationality. American Psychologist, 58(9), 697–720.CrossRefGoogle Scholar
  47. Kahneman, D. (2011). Thinking, fast and slow. New York: Macmillan.Google Scholar
  48. Karpinski, A., & Hilton, J. L. (2001). Attitudes and the implicit association test. Journal of Personality and Social Psychology, 81(5), 774–788.CrossRefGoogle Scholar
  49. Karpinski, A., & Steinman, R. B. (2006). The single category implicit association test as a measure of implicit social cognition. Journal of Personality and Social Psychology, 91(1), 16–32.CrossRefGoogle Scholar
  50. Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1–22.CrossRefGoogle Scholar
  51. Keller, K. L. (1996). Brand Equity and Integrated Communication. In. E. Thorson & J. Moore (eds.), Integrated Communication: Synergy of Persuavise Voices (pp. 103–132). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  52. Keller, K. L. (2003). Brand synthesis: The multidimensionality of brand knowledge. Journal of Consumer Research, 29(4), 595–600.CrossRefGoogle Scholar
  53. Keller, K. L., & Lehmann, D. R. (2006). Brands and branding: Research findings and future priorities. Marketing Science, 25(6), 740–759.CrossRefGoogle Scholar
  54. Kenning, P., & Linzmajer, M. (2011). Consumer neuroscience – An overview of an emerging discipline with implications for consumer policy. Journal of Consumer Protection and Food Safety, 6(1), 111–125.Google Scholar
  55. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147–156.CrossRefGoogle Scholar
  56. Lindstrom, M. (2008). Buyology: Truth and lies about why we buy. New York: Random House.Google Scholar
  57. Maison, D., Greenwald, A. G., & Bruin, R. H. (2004). Predictive validity of the Implicit Association Test in studies of brands, consumer attitudes, and behavior. Journal of Consumer Psychology, 14(4), 405–415.CrossRefGoogle Scholar
  58. Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., Grant, S., Changeux, J.-P., & Sari, A. (2011). Introducing the human brain project. Procedia Computer Science, 7, 39–42.CrossRefGoogle Scholar
  59. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387.CrossRefGoogle Scholar
  60. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.CrossRefGoogle Scholar
  61. National Institutes of Health (2014). The brain initiative. Accessed 21 Nov 2014.
  62. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231–259.CrossRefGoogle Scholar
  63. Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–664.CrossRefGoogle Scholar
  64. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2007). The implicit association test at age 7: A methodological and conceptual review. In J. A. Bargh (eds.), Automatic processes in social thinking and behavior (pp. 265–292). New York: Psychology Press.Google Scholar
  65. Ohme, R., Matukin, M., & Szczurko, T. (2010). Neurophysiology uncovers secrets of TV commercials. der markt – Journal für Marketing, 49(3–4), 133–142.CrossRefGoogle Scholar
  66. Plassmann, H., Kenning, P., Deppe, M., Kugel, H., & Schwindt, W. (2008). How choice ambiguity modulates activity in brain areas representing brand preference: Evidence from consumer neuroscience. Journal of Consumer Behaviour, 7(4–5), 360–367.CrossRefGoogle Scholar
  67. Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the brain: A critical review and outlook. Journal of Consumer Psychology, 22(1), 18–36.CrossRefGoogle Scholar
  68. Pradeep, A. K. (2010). The buying brain: Secrets for selling to the subconscious mind. Hoboken: Wiley.Google Scholar
  69. Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: A behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20(4), 431–441.CrossRefGoogle Scholar
  70. Reimann, M., Schilke, O., Weber, B., Neuhaus, C., & Zaichkowsky, J. (2011). Functional magnetic resonance imaging in consumer research: A review and application. Psychology and Marketing, 28(6), 608–637.CrossRefGoogle Scholar
  71. Rocha, M. (2014). Financial applications for brand valuation. Accessed 07 Dec 2014.
  72. Schmidt, J. B., & Calantone, R. J. (2009). Escalation of commitment during new product development. Journal of the Academy of Marketing Science, 30(2), 103–118.CrossRefGoogle Scholar
  73. Schneider, M. (2001). Systems theory of motivational development. In N. J. Smelser & P. B. Baltes (eds.), International encyclopedia of the social & behavioral sciences (pp. 10120–10125). Oxford: Elsevier.Google Scholar
  74. Seymour, E., & Rosemary, P. (1999). Some basic issues regarding dual-process theories from the perspective of cognitive–experiential self-theory. In S. Chaiken & Y. Trope (eds.), Dual-process theories in social psychology (pp. 462–482). New York: Guilford Press.Google Scholar
  75. Sharp, C., Monterosso, J., & Montague, P. R. (2012). Neuroeconomics: A bridge for translational research. Biological Psychiatry, 72(2), 87–92.CrossRefGoogle Scholar
  76. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.CrossRefGoogle Scholar
  77. Shiv, B., & Fedorikhin, A. (1999). Heart and mind in conflict: The interplay of affect and cognition in consumer decision making. Journal of Consumer Research, 26(3), 278–292.CrossRefGoogle Scholar
  78. Tyebjee, T. T. (1979). Response time, conflict, and involvement in brand choice. Journal of Consumer Research, 6(3), 295–304.CrossRefGoogle Scholar
  79. Walvis, T. H. (2008). Three laws of branding: Neuroscientific foundations of effective brand building. Journal of Brand Management, 16(3), 176–194.CrossRefGoogle Scholar
  80. Weber, B., Rangel, A., Wibral, M., & Falk, A. (2009). The medial prefrontal cortex exhibits money illusion. PNAS, 106(13), 5025–5028.CrossRefGoogle Scholar
  81. Wilkie, W. (1986). Consumer behaviour. New York: Wiley.Google Scholar
  82. Wilson, T. D. (2002). Strangers to ourselves: Discovering the adaptive unconscious. Cambridge: Belknap Press.Google Scholar
  83. Wilson, T. D., Lindsey, S., & Schooler, T. Y. (2000). A model of dual attitudes. Psychological Review, 107(1), 101–126.CrossRefGoogle Scholar

Copyright information

© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden 2016

Authors and Affiliations

  • Steffen Schmidt
    • 1
    Email author
  • Klaus-Peter Wiedmann
    • 2
  • Philipp Reiter
    • 3
  • Christina Kurlbaum
    • 4
  1. 1.Institut für Marketing & ManagementLeibniz Universität HannoverHannoverGermany
  2. 2.Fakultät WirtschaftswissenschaftenLeibniz Universität Hannover, Institut für Marketing und ManagementHannoverGermany
  3. 3.eye square GmbHBerlinGermany
  4. 4.Continental Reifen Deutschland GmbHKorbachGermany

Personalised recommendations