Advertisement

Informationsverbreitung in sozialen Medien

  • Cornelius Puschmann
  • Isabella Peters
Living reference work entry
Part of the Springer NachschlageWissen book series

Zusammenfassung

Die Weitergabe und Verbreitung von Informationen zählen zu den beliebtesten Aktivitäten in den sozialen Medien. Zahlreiche Nutzungsoptionen (z. B. Posting, Sharing, Retweeting, Reblogging) ermöglichen das schnelle Teilen von Neuigkeiten in unterschiedlichen Formaten. Dabei erfüllen Weitergabe und Verbreitung von Informationen für die User wichtige soziale und kommunikative Funktionen, die über den Kerneffekt der Informationsdiffusion häufig hinausgehen. In unserem Beitrag geben wir auf Basis aktueller Literatur einen Überblick über typische Erklärungsmodelle für Informationsdiffusion einerseits und beschreiben andererseits Motive für die Weitergabe und Verbreitung von Informationen in und mithilfe von sozialen Medien. Wir skizzieren zudem den Einfluss von Netzwerkstrukturen und Informationstypen auf und Barrieren bei der Informationsdiffusion.

Schlüsselwörter

Informationsweitergabe Informationsverbreitung Informationsdiffusion Meme Virale Effekte Motive 

Literatur

  1. Adamic, Lada, Lento Thomas, Eytan Adar, und Pauline Ng. 2014. The evolution of memes on Facebook. Facebook Data Science. https://www.facebook.com/notes/facebook-data-science/the-evolution-of-memes-on-facebook/10151988334203859.
  2. Bakshy, Eytan, Itamar Rosenn, Cameron Marlow, und Lada A. Adamic. 2012. The role of social networks in information diffusion. In Proceedings of the 21st international conference on the World Wide Web (WWW ’12), 1–10. New York: ACM Press. doi: 10.1145/2187836.2187907.Google Scholar
  3. Bakshy, Eytan, Itamar Rosenn, Cameron Marlow, und Lada A. Adamic. 2012. The role of social networks in information diffusion. In Proceedings of the 21st international conference on the World Wide Web (WWW ’12), 1–10. New York: ACM Press. doi: 10.1145/2187836.2187907.Google Scholar
  4. Bakshy, Eytan, Solomon Messing, und Lada Adamic. 2015. Exposure to ideologically diverse news and opinion on Facebook. Science 58(4): 707–731. doi:10.1126/science.aaa1160.Google Scholar
  5. Bastos, Marco Toledo, Cornelius Puschmann, und Rodrigo Travitzki. 2013. Tweeting across hashtags: Overlapping users and the importance of language, topics, and politics. In Proceedings of the 24th ACM conference on hypertext and social media (HT ’13), 164–168. New York: ACM Press. doi:10.1145/2481492.2481510.Google Scholar
  6. Boyd, Danah, Scott Golder, und Gilad Lotan. 2010. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter. In Proceedings of the 43rd Hawaii international conference on system sciences, 1–10. Los Alamitos: IEEE Computer Society. doi: 10.1109/HICSS.2010.412.Google Scholar
  7. Bruns, Axel. 2008. Blogs, Wikipedia, Second life, and beyond: From production to produsage. New York: Peter Lang.Google Scholar
  8. Carey, James W. 1989. Communication as culture: Essays on media and society. New York: Psychology Press.Google Scholar
  9. Cheng, Justin, Lada A. Adamic, P. Alex Dow, Jon Kleinberg, und Jure Leskovec. 2014. Can cascades be predicted? In Proceedings of the 23rd international World Wide Web conference (WWW ’14), Hrsg. Wonjae Lee, Hae-Chang Rim und Daniel Schwabe, 1–11. Seoul: ACM Press. doi: 10.1145/2566486.2567997.Google Scholar
  10. Cho, Hichang, Michael Stefanone, und Geri Gay. 2002. Social information sharing in a CSCL community. In Proceedings of the conference on computer support for collaborative learning (CSCL ’02), 43–51. Morristown: Association for Computational Linguistics. doi: 10.3115/1658616.1658623.Google Scholar
  11. Constant, David, Sara Kiesler, und Lee Sproull. 1994. What’s mine is ours, or is it? A study of attitudes about information sharing. Information Systems Research 5(4): 400–421. doi:10.1287/isre.5.4.400.CrossRefGoogle Scholar
  12. Cover, Thomas M., und Joy A. Thomas. 1991. Elements of information theory. Hoboken: Wiley.CrossRefGoogle Scholar
  13. Coviello, Lorenzo, Yunkyu Sohn, Adam D. I. Kramer, Cameron Marlow, Massimo Franceschetti, Nicholas A. Christakis, und James H. Fowler. 2014. Detecting emotional contagion in massive social networks. PLoS ONE 9(3): 1–6. doi:10.1371/journal.pone.0090315.CrossRefGoogle Scholar
  14. Ferrara, Emilio, Onur Varol, Filippo Menczer, und Alessandro Flammini. 2013. Traveling trends: Social butterflies or frequent fliers? In ACM conference on online social networks (COSN), 213–222. New York: ACM. doi: 10.1145/2512938.2512956.Google Scholar
  15. Gaffney, Devin, und Cornelius Puschmann. 2012. Game or measurement? Algorithmic transparency and the Klout score. In #influence12: Symposium & workshop on measuring influence on social media, 1–2. Nova Scotia Halifax: Dalhousie University. http://www.socialmedialab.ca/influence12/submissions/influence12_submission_23.pdf.
  16. Gillespie, Tarleton. 2014. The relevance of algorithms. In Media technologies: Essays on communication, materiality, and society, Hrsg. Tarleton Gillespie, Pablo Boczkowski und Kirsten Foot, 167–194. Cambridge, MA: MIT Press.Google Scholar
  17. Granovetter, Mark. 1973. The strength of weak ties. American Journal of Sociology 78: 1360–1380. doi:10.1086/225469.CrossRefGoogle Scholar
  18. Gruhl, D., David Liben-Nowell, R. Guha, und A. Tomkins. 2004. Information diffusion through Blogspace. ACM SIGKDD Explorations Newsletter 6(2): 43–52. doi:10.1145/1046456.1046462.CrossRefGoogle Scholar
  19. Harrington, Stephen, Tim Highfield, und Axel Bruns. 2013. More than a backchannel: Twitter and television. Participations: Journal of Audience & Reception Studies 10(1): 405–409.Google Scholar
  20. Himelboim, Itai, Stephen McCreery, und Marc Smith. 2013. Birds of a feather tweet together: Integrating network and content analyses to examine cross-ideology exposure on Twitter. Journal of Computer-Mediated Communication 18(2): 154–174. doi:10.1111/jcc4.12001.CrossRefGoogle Scholar
  21. Holmberg, Kim. 2012. Online information ripples. A conceptual model for analyzing information dissemination patterns in social media. In Proceedings Der 2. DGI-Konferenz, 64. Jahrestagung Der Deutschen Gesellschaft Für Informationswissenschaft, Hrsg. Marlies Ockenfeld, Isabella Peters und Katrin Weller, 11–18. Frankfurt a. M.: DGI.Google Scholar
  22. Hong, Lichan, Gregorio Convertino, und Ed H. Chi. 2011. Language matters in Twitter: A large scale study characterizing the top languages in Twitter characterizing differences across languages including URLs and hashtags. In Proceedings of the fifth international AAAI conference on weblogs and social media (ICWSM ’11), 518–521. Menlo Park: The AAAI Press.Google Scholar
  23. Iyengar, Raghuram, Christophe Van den Bulte, und Thomas W. Valente. 2011. Opinion leadership and social contagion in new product diffusion. Marketing Science 30(2): 195–212. doi:10.1287/mksc.1100.0566.CrossRefGoogle Scholar
  24. Java, Akshay, Xiaodan Song, Tim Finin, und Belle Tseng. 2007. Why we Twitter: Understanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on web mining and social network analysis, 56–65. San Jose: ACM. doi: 10.1145/1348549.1348556.Google Scholar
  25. Jeffries, Adrianne. 2014. You’re not going to read this. But you’ll probably share it anyway. The Verge. http://www.theverge.com/2014/2/14/5411934/youre-not-going-to-read-this.
  26. Jenkins, Henry, Xiaochang Li, und Ana Domb Krauskopf. 2008. If it doesn’t spread, it’s dead: Creating value in a spreadable marketplace. Cambridge, MA: Convergence Culture Consortium.Google Scholar
  27. Knobel, Michele, und Colin Lankshear. 2007. Online memes, affinities, and cultural production. In A new literacies sampler, 199–227. New York: Peter Lang.Google Scholar
  28. Kollock, Peter. 1999. The economies of online cooperation: Gifts and public goods in cyberspace. In Communities in cyberspace, Hrsg. Marc Smith und Peter Kollock, 219–237. London: Routledge.Google Scholar
  29. Kwak, Haewoon, Changhyun Lee, Hosung Park, und Sue Moon. 2010. What is Twitter, a social network or a news media? Categories and subject descriptors. In Proceedings of the 19th international conference on the World Wide Web (WWW ’10), Hrsg. Juliana Freire und Soumen Chakrabarti, 591–600. Raleigh: ACM Press.Google Scholar
  30. Lazer, David, und Allan Friedman. 2005. The parable of the hare and the tortoise: Small worlds, diversity, and system performance. Faculty research working papers series. doi: 10.2139/ssrn.832627.Google Scholar
  31. Leavitt, Alex. 2014. From #followfriday to YOLO: Exploring the cultural salience of Twitter memes. In Twitter and society, Hrsg. Katrin Weller, Axel Bruns, Jean Burgess, Merja Mahrt und Cornelius Puschmann, 137–154. New York: Peter Lang.Google Scholar
  32. Lee, Chei Sian, und Long Ma. 2012. News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior 28(2): 331–339. doi:10.1016/j.chb.2011.10.002.CrossRefGoogle Scholar
  33. Linde, Frank, und Wolfgang G. Stock. 2011. Information markets: A strategic guideline for the I-commerce. Berlin/New York: De Gruyter Saur.CrossRefGoogle Scholar
  34. Matsubara, Yasuko, Yasushi Sakurai, B. Aditya Prakash, Lei Li, und Christos Faloutsos. 2012. Rise and fall patterns of information diffusion. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining – KDD ’12, 6. New York: ACM Press. doi: 10.1145/2339530.2339537.Google Scholar
  35. McPherson, Miller, Lynn Smith-Lovin, und James M. Cook. 2001. Bird of a feather: Homophily in social networks. Annual Review of Sociology 27(2001): 415–444.CrossRefGoogle Scholar
  36. Mowbray, M. 2014. Automated twitter accounts. In Twitter and Society, Hrsg. K. Weller, A. Bruns, J. Burgess, M. Mahrt und C. Puschmann, S. 183–194. New York: Peter Lang.Google Scholar
  37. Naaman, Mor, Jeffrey Boase, und Chih-hui Lai. 2010. Is it really about me? Message content in social awareness streams. In Proceedings of the 2010 ACM conference on computer-supported cooperative work (CSCW ’10), Hrsg. Steve Whittaker und Elizabeth F. Churchill, 189–192. Savannah: ACM Press.Google Scholar
  38. Pariser, Eli. 2012. The filter bubble: How the new personalized web is changing what we read and how we think. New York: Penguin.CrossRefGoogle Scholar
  39. Paßmann, Johannes, Thomas Boeschoten, und Mirko Tobias Schäfer. 2014. The gift of the gab: Retweet cartels and gift economies on Twitter. In Twitter and society, Hrsg. Katrin Weller, Axel Bruns, Jean Burgess, Merja Mahrt und Cornelius Puschmann, 331–344. New York: Peter Lang.Google Scholar
  40. Rheingold, Howard. 1993. The virtual community. Cambridge, MA: MIT Press.Google Scholar
  41. Rogers, Everett M. 2003. Diffusion of innovations. New York: Free Press.Google Scholar
  42. Sandvig, Christian. 2015. The Facebook ‚it’s not our fault‘ study. Social Media Collective Research Blog. http://www.socialmediacollective.org/2015/05/07/the-facebook-its-not-our-fault-study/.
  43. Seely Brown, J., und P. Duguid. 2000. The social Life of information. Cambridge, MA: Harvard Business Review Press.Google Scholar
  44. Shannon, C. E., und W. Weaver. 1949. The mathematical theory of communication. Urbana, Illinois: University of Illinois Press.Google Scholar
  45. Shifman, L. 2012. An anatomy of a YouTube meme. New Media & Society 14(2): 187–203. doi:10.1177/1461444811412160.CrossRefGoogle Scholar
  46. Smith, Marc A., Lee Rainie, Itai Himelboim, und Ben Shneiderman. 2014. Mapping Twitter topic networks: From polarized crowds to community clusters. Washington. Pew Research Center.Google Scholar
  47. Stattner, Erick, und Nicolas Vidot. 2011. Social network analysis in epidemiology: Current trends and perspectives. In Fifth IEEE international conference on research challenges in information science (RCIS), Hrsg. Martine Collard und Robert Teller, 1–11. Le Gosier: IEEE. doi: 10.1109/RCIS.2011.6006866.Google Scholar
  48. Talja, Sanna. 2002. Information sharing in academic communities: Types and levels of collaboration in information seeking and use. New Review of Information Behaviour Research 3(2002): 143–160.Google Scholar
  49. Wasserman, Stanley, und Katherine Faust. 1994. Social network analysis: Methods and applications. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  50. Watts, Duncan J., und Peter Sheridan Dodds. 2007. Influentials, networks, and public opinion formation. Journal of Consumer Research 34(4): 441–458. doi:10.1086/518527.CrossRefGoogle Scholar
  51. Watts, Duncan J., und Steven H. Strogatz. 1998. Collective dynamics of ‚small-world‘ networks. Nature 393(4): 440–442. doi:10.1038/30918.CrossRefGoogle Scholar
  52. WebhostingBuzz. 2013. Who’s sharing what – The state of social sharing in 2013. http://www.webhostingbuzz.com/blog/2013/03/21/whos-sharing-what/.
  53. Weng, Jianshu, Ee-peng Lim, Jing Jiang, und Qi He. 2010. Twitter rank: Finding topic-sensitive influential twitterers. In ACM international conference on web search and data mining (WSDM 2010), 261–270. New York: ACM Press. doi: 10.1145/1718487.1718520.Google Scholar
  54. Wu, Shaomei, Jake M. Hofman, Winter A. Mason, und Duncan J. Watts. 2011. Who says what to whom on Twitter. In Proceedings of the 20th international conference on World Wide Web – WWW ’11 (2011), 705–714. doi: 10.1145/1963405.1963504.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2015

Authors and Affiliations

  1. 1.Institut für Informations- und BibliothekswissenschaftenHumboldt-Universität zu BerlinBerlinDeutschland
  2. 2.ZBW Deutsche Zentralbibliothek für WirtschaftswissenschaftenKielDeutschland

Personalised recommendations