Advertisement

Empirische Untersuchung veränderter Bewusstseinszustände

Definition, Quantifizierung und Forschungsperspektiven
Living reference work entry
Part of the Springer Reference Psychologie book series (SRP)

Zusammenfassung

Ein Ziel der neurowissenschaftlichen Bewusstseinsforschung besteht in der Charakterisierung neuronaler Mechanismen, die bestimmte Funktionen des Bewusstseins ermöglichen. In der empirischen Forschung kann die experimentelle Induktion einer reversiblen Bewusstseinsveränderung genutzt werden, um gleichzeitig auftretende Veränderungen in neuronalen Prozessen zu erfassen. Dadurch sollen Rückschlüsse auf neuronale Korrelate des subjektiven Erlebens ermöglicht werden. Da induzierte Zustände zwischen Studien und Probanden stark variieren, ist eine präzise Quantifizierung des subjektiven Erlebens notwendig, um studienübergreifende Vergleichbarkeit herzustellen. In dem vorliegenden Kapitel werden nach einer groben Einteilung experimentell nutzbarer Bewusstseinsveränderungen die besonderen Herausforderungen der Quantifizierung von subjektivem Erleben diskutiert. Ein Überblick über die derzeit verfügbaren psychometrischen Instrumente (Fragebögen) sowie über die physiologisch relevanten Variablen soll zukünftigen Studien bei der Auswahl von Messinstrumenten helfen, um die Vergleichbarkeit von Forschungsergebnissen zu fördern und den Einfluss möglicher Störvariablen zu minimieren.

Schlüsselwörter

Altered States of Consciousness ASC Veränderte Zustände des Wachbewusstseins Quantifikation Fragebögen Phenomenoconnectomics Bewusstseinsforschung 

Literatur

  1. Abramson, H. A., Jarvik, M. E., Kaufman, M. R., Kornetsky, C., Levine, A., & Wagner, A. (1955a). Lysergic acid diethylamide (LSD-25): I. Physiological and perceptual responses. The Journal of Psychology: Interdisciplinary and Applied, 39(1), 3–60.CrossRefGoogle Scholar
  2. Abramson, H. A., Jarvik, M. E., Levine, A., Kaufman, M. R., & Hirsch, M. W. (1955b). Lysergic acid diethylamide (LSD-25): XV. The effects produced by substitution of a tap water placebo. The Journal of Psychology: Interdisciplinary and Applied, 40, 367–383.CrossRefGoogle Scholar
  3. Bodmer, I., Dittrich, A., & Lamparter, D. (1994). Aussergewöhnliche Bewusstseinszustände – Ihre gemeinsame Struktur und Messung. In A. Hofmann & H. Leuner (Hrsg.), Welten des Bewusstseins. Bd. 3. Experimentelle Psychologie, Neurobiologie und Chemie (S. 45–58). Berlin: VWB Verlag.Google Scholar
  4. Bowdle, T. A., Radant, A. D., Cowley, D. S., Kharasch, E. D., Strassman, R. J., & Roy-Byrne, P. P. (1998). Psychedelic effects of ketamine in healthy volunteers: Relationship to steady-state plasma concentrations. Anesthesiology, 88(1), 82–88.CrossRefPubMedGoogle Scholar
  5. Byrne, A. (2015). Inverted Qualia. In E. N. Zalta (Hrsg.), Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/qualia-inverted/. Zugegriffen am 25.10.2016.
  6. Carhart-Harris, R. L., Erritzoe, D., & Williams, T. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 2138–2143. doi:10.1073/pnas.1119598109.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carhart-Harris, R. L., Leech, R., & Erritzoe, D. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia Bulletin, 39(6), 1343–1351. doi:10.1093/schbul/sbs117.CrossRefPubMedGoogle Scholar
  8. Carhart-Harris, R. L., Murphy, K., & Leech, R. (2015). The effects of acutely administered 3,4-methylenedioxymethamphetamine on spontaneous brain function in healthy volunteers measured with arterial spin labeling and blood oxygen level-dependent resting state functional connectivity. Biological Psychiatry, 78(8), 554–562. doi:10.1016/j.biopsych.2013.12.015.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carhart-Harris, R., Muthukumaraswamy, S., & Roseman, L. (2016a). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4853–4858.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carhart-Harris, R. L., Kaelen, M., & Bolstridge, M. (2016b). The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychological Medicine, 46(7), 1379–1390. doi:10.1017/S0033291715002901.CrossRefPubMedGoogle Scholar
  11. Casey, B. J., Craddock, N., & Cuthbert, B. N. (2013). DSM-5 and RDoC: Progress in psychiatry research? Nature Reviews Neuroscience, 14, 810–814. doi:10.1038/nrn3621.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cardeña, E., & Pekala R.J. (2014) Researching States of Consciousness and Anomalous Experiences. In American Psychological Association (APA) (Hrsg.), Varieties of Anomalous Experience: Examining the Scientific Evidence (Aufl. 2, August 13, 2013 S. 21–47). ISBN: 978-1-4338-1529-4.Google Scholar
  13. Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530. doi:10.1007/s00213-009-1561-0.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dandash, O., Harrison, B. J., & Adapa, R. (2014). Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: Implications for psychosis. Neuropsychopharmacology, 40(3), 622–631. doi:10.1038/npp.2014.210.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Daniel, C., & Mason, O. J. (2015). Predicting psychotic-like experiences during sensory deprivation. BioMed Research International. doi:10.1155/2015/439379.Google Scholar
  16. Daniel, C., Lovatt, A., & Mason, O. J. (2014). Psychotic-like experiences and their cognitive appraisal under short-term sensory deprivation. Frontiers in Psychiatry. doi:10.3389/fpsyt.2014.00106.PubMedPubMedCentralGoogle Scholar
  17. Dittrich, A. (1975). Zusammenstellung eines Fragebogens (APZ) zur Erfassung abnormer psychischer Zustände. Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie, 23, 12–20.Google Scholar
  18. Dittrich, A. (1985). Ätiologie-unabhängige Strukturen veränderter Wachbewusstseinszustände. Stuttgart: Enke.Google Scholar
  19. Dittrich, A. (1996). Ätiologieunabhängige Strukturen veränderter Wachbewusstseinszustände. Berlin: VWB Verlag.Google Scholar
  20. Dittrich, A. (1998). The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry, 31(2), 80–84. doi:10.1055/s-2007-979351.CrossRefPubMedGoogle Scholar
  21. Dittrich, A., Lamparter, D., & Maurer, M. (2006). 5D-ABZ: Fragebogen zur Erfassung Aussergewöhnlicher Bewusstseinszustände. Eine kurze Einführung. Zürich: PSIN PLUS.Google Scholar
  22. Doblin, R. (1991). Pahnke’s „Good Friday experiment“ – A long-term follow-up and methodological critique. The Journal of Transpersonal Psychology, 23(1), 1–28.Google Scholar
  23. Dolder, P. C., Schmid, Y., & Haschke, M. (2015). Pharmacokinetics and concentration-effect relationship of oral LSD in humans. International Journal of Neuropsychopharmacology. doi:10.1093/ijnp/pyv072.PubMedPubMedCentralGoogle Scholar
  24. Faillace, L., Vourlekis, A., & Szara, S. (1967). Clinical evaluation of some hallucinogenic tryptamine derivatives. The Journal of Nervous and Mental Disease, 145(4), 306–313.CrossRefPubMedGoogle Scholar
  25. Farthing, G. W. (1991). Psychology of consciousness. Upper Saddle River: Prentice Hall.Google Scholar
  26. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3(2), 89–97.PubMedGoogle Scholar
  27. Gouzoulis-Mayfrank, E., Thelen, B., & Habermeyer, E. (1999). Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and -methamphetamine in healthy volunteers. Psychopharmacology, 142, 41–50.CrossRefPubMedGoogle Scholar
  28. Gouzoulis-Mayfrank, E., Heekeren, K., & Neukirch, A. (2006). Inhibition of return in the human 5HT2A agonist and NMDA antagonist model of psychosis. Neuropsychopharmacology, 31(2), 431–441. doi:10.1038/sj.npp.1300882.CrossRefPubMedGoogle Scholar
  29. Green, A. R., O’Shea, E., & Colado, M. I. (2004). A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. European Journal of Pharmacology, 500(1–3), 3–13. doi:10.1016/j.ejphar.2004.07.006.CrossRefPubMedGoogle Scholar
  30. Griffiths, R. R., Richards, W. A., McCann, U., & Jesse, R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 187(3), 268–283. doi:10.1007/s00213-006-0461-9.CrossRefPubMedGoogle Scholar
  31. Griffiths, R. R., Johnson, M. W., & Richards, W. A. (2011). Psilocybin occasioned mystical-type experiences: Immediate and persisting dose-related effects. Psychopharmacology, 218(4), 649–665.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haertzen, C. A., Hill, H. E., & Belleville, R. E. (1963). Development of the Addiction Research Center Inventory (ARCI): Selection of items that are sensitive to the effects of various drugs. Psychopharmacologia, 4, 155–166. doi:10.1007/BF02584088.CrossRefPubMedGoogle Scholar
  33. Hill, H. E., Haertzen, C. A., Wolbach, A. B., & Miner, E. J. (1963). The Addiction Research Center Inventory: Standardization of scales which evaluate subjective effects of morphine, amphetamine, pentobarbital, alcohol, LSD-25, pyrahexyl and chlorpromazine. Psychopharmacologia, 4, 167–183. doi:10.1007/BF02584089.CrossRefPubMedGoogle Scholar
  34. Hood, R. W. (1975). The construction and preliminary validation of a measure of reported mystical experience. Journal for the Scientific Study of Religion, 14(1), 29–41. doi:10.2307/1384454.CrossRefGoogle Scholar
  35. Hood, R. W. (1977). Eliciting mystical states of consciousness with semistructured nature experiences. Journal for the Scientific Study of Religion, 16(2), 155–163. doi:10.2307/1385746.CrossRefGoogle Scholar
  36. Hood, R. W., Ghorbani, N., & Watson, P. J. (2001). Dimensions of the mysticism scale: Confirming the three-factor structure in the United States and Iran. Journal for the Scientific Study of Religion, 40(4), 691–705. doi:10.1111/0021-8294.00085.CrossRefGoogle Scholar
  37. Hove, M. J., Stelzer, J., & Nierhaus, T. (2015). Brain network reconfiguration and perceptual decoupling during an absorptive state of consciousness. Cerebral Cortex. doi:10.1093/cercor/bhv137.PubMedGoogle Scholar
  38. Jarvik, M. E., Abramson, H. A., & Hirsch, M. W. (1955). Comparative subjective effects of seven drugs including lysergic acid diethylamide (LSD-25). Journal of Abnormal Psychology, 51(3), 657–662.CrossRefPubMedGoogle Scholar
  39. Johansen, P. Ø., & Krebs, T. S. (2009). How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. Journal of Psychopharmacology, 23(4), 389–391. doi:10.1177/0269881109102787.CrossRefPubMedGoogle Scholar
  40. Johnson, M., Richards, W., & Griffiths, R. (2008). Human hallucinogen research: Guidelines for safety. Journal of Psychopharmacology, 22(6), 603–620. doi:10.1177/0269881108093587.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kirkpatrick, M. G., Francis, S. M., & Lee, R. (2014). Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology, 46, 23–31. doi:10.1016/j.psyneuen.2014.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kometer, M., Schmidt, A., Jäncke, L., & Vollenweider, F. X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on a oscillations, N170 visual-evoked potentials, and visual hallucinations. Journal of Neuroscience, 33(25), 10544–10551. doi:10.1523/JNEUROSCI.3007-12.2013.CrossRefPubMedGoogle Scholar
  43. Kraehenmann, R., Preller, K. H., & Scheidegger, M. (2015). Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biological Psychiatry, 78(8), 572–581. doi:10.1016/j.biopsych.2014.04.010.CrossRefPubMedGoogle Scholar
  44. Langs, R., & Barr, H. (1968). Lysergic acid diethylamide (LSD-25) and schizophrenic reactions. A comparative study. Journal of Nervous and Mental Disease, 147(2), 163–172.CrossRefPubMedGoogle Scholar
  45. Linton, H., & Langs, R. (1962). Placebo reaction in a study of lysergic acid diethylamide (LSD-25). Archives of General Psychiatry, 6, 369–383.CrossRefPubMedGoogle Scholar
  46. MacLean, K. A., Johnson, M. W., & Griffiths, R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. Journal of Psychopharmacology, 25, 1453–1461.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maclean, K. A., Leoutsakos, J.-M. S., Johnson, M. W., & Griffiths, R. R. (2012). Factor analysis of the mystical experience questionnaire: A study of experiences occasioned by the hallucinogen psilocybin. Journal for the Scientific Study of Religion, 51(4), 721–737. doi:10.1111/j.1468-5906.2012.01685.x.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Majić, T., Schmidt, T. T., & Gallinat, J. (2015). Peak experiences and the afterglow phenomenon: When and how do therapeutic effects of hallucinogens depend on psychedelic experiences? Journal of Psychopharmacology, 29, 241–253. doi:10.1177/0269881114568040.CrossRefPubMedGoogle Scholar
  49. Martin, W., Sloan, J., Sapira, J., & Jasinski, D. (1971). Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clinical Pharmacology & Therapeutics, 12(2), 245–258.CrossRefGoogle Scholar
  50. Maslow, A. H. (1964). Religions, values, and peak-experiences. Indianapolis: Kappa Delta Pi.Google Scholar
  51. Mason, O. J., & Brady, F. (2009). The psychotomimetic effects of short-term sensory deprivation. Journal of Nervous and Mental Disease, 197, 783–785. doi:10.1097/NMD.0b013e3181b9760b.CrossRefPubMedGoogle Scholar
  52. Mason, O. J., Morgan, C. J. M., Stefanovic, A., & Curran, H. V. (2008). The psychotomimetic states inventory (PSI): Measuring psychotic-type experiences from ketamine and cannabis. Schizophrenia Research, 103, 138–142. doi:10.1016/j.schres.2008.02.020.CrossRefPubMedGoogle Scholar
  53. Massen, J., & Bredenkamp, C. (2005). Die Wundt-Bühler-Kontroverse aus der Sicht der heutigen kognitiven Psychologie. Zeitschrift für Psychologie, 213(2), 109–114.CrossRefGoogle Scholar
  54. Metzner, R. (2005). Psychedelic, psychoactive, and addictive drugs and states of consciousness. In M. Earleywine (Hrsg.), Mind-altering drugs: The science of subjective experience (S. 25–48). Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. Muthukumaraswamy, S. D., Carhart-Harris, R. L., & Moran, R. J. (2013). Broadband cortical desynchronization underlies the human psychedelic state. Journal of Neuroscience, 33, 15171–15183. doi:10.1523/JNEUROSCI.2063-13.2013.CrossRefPubMedGoogle Scholar
  56. Nagel, T. (1974). Philosophical review: What is it like to be a bat? The Philosophical Review, 83(4), 435–450. doi:10.2307/2183914.CrossRefGoogle Scholar
  57. Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of schedule I drug laws on neuroscience research and treatment innovation. Nature Reviews Neuroscience, 14, 577–585. doi:10.1038/nrn3530.CrossRefPubMedGoogle Scholar
  58. Pahnke, W. N. (1963). Drugs and mysticism: An analysis of the relationship between psychedelic drugs and the mystical consciousness. Cambridge: Harvard University Press.Google Scholar
  59. Pahnke, W. N. (1966). Drugs and mysticism. International Journal of Parapsychology, 8, 295–314.Google Scholar
  60. Passie, T. (2007). Bewusstseinszustände: Konzeptualisierung und Messung. Münster: LIT Verlag.Google Scholar
  61. Pekala, R. (1982). The phenomenology of consciousness inventory. Thorndale: Psychophenomenological Concepts.Google Scholar
  62. Pekala, R. (1991). Quantifying consciousness: An empirical approach. New York: Plenum Press.CrossRefGoogle Scholar
  63. Preller, K. H., Pokorny, T., & Hock, A. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1524187113.PubMedPubMedCentralGoogle Scholar
  64. Riba, J., Rodríguez-Fornells, A., Strassman, R. J., & Barbanoj, M. J. (2001). Psychometric assessment of the Hallucinogen Rating Scale. Drug and Alcohol Dependence, 62, 215–223. doi:10.1016/S0376-8716(00)00175-7.CrossRefPubMedGoogle Scholar
  65. Roseman, L., Leech, R., & Feilding, A. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2014.00204.PubMedPubMedCentralGoogle Scholar
  66. Rux, M. (2002). Erprobung der deutschen Übersetzung des Phenomenology of Consciousness Inventory von Pekala: Normwerte, Gütekriterien, Änderungsvorschläge, Fachbereich Psychologie. Gießen: Justus-Liebig-Universität.Google Scholar
  67. Scharfetter, C. (1981). Ego-psychopathology: The concept and its empirical evaluation. Psychological Medicine, 11(2), 273–280.CrossRefPubMedGoogle Scholar
  68. Scharfetter, C. (1995). The self-experience of schizophrenics: Empirical studies of the ego/self in schizophrenia, borderline disorders and depression. Zürich: Scharfetter.Google Scholar
  69. Schmid, Y., Enzler, F., & Gasser, P. (2015). Acute effects of lysergic acid diethylamide in healthy subjects. Biological Psychiatry, 78, 544–553. doi:10.1016/j.biopsych.2014.11.015.CrossRefPubMedGoogle Scholar
  70. Sessa, B. (2013). The psychedelic renaissance. London: Muswell Hill Press.Google Scholar
  71. Shor, R. E. (1960). The frequency of naturally occurring „hypnotic-like“ experiences in the normal college population. International Journal of Clinical and Experimental Hypnosis, 8(3), 151–163. doi:10.1080/00207146008415846.CrossRefGoogle Scholar
  72. Shor, R., Martin, T., & O’Connell, D. (1962). Validation and cross-validation of a scale of self-reported personal experiences which predicts hypnotizability. The Journal of Psychology Interdisciplinary and Applied, 53(1), 55–75.CrossRefGoogle Scholar
  73. Sporns, O. (2010). Networks of the brain. Cambridge: MIT Press.Google Scholar
  74. Stace, W. (1960) The problem of the Universal Core, In: Mysticism and Philosophy, New York: MacMillan Press.Google Scholar
  75. Stephan, K. E., & Mathys, C. (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 85–92.CrossRefPubMedGoogle Scholar
  76. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35, 509–527. doi:10.1093/schbul/sbn176.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Strajhar, P., Schmid, Y., & Liakoni, E. (2014). Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects. Neuroendocrinology, 100, 17–25. doi:10.1159/000364879.CrossRefGoogle Scholar
  78. Strassman, R. J., Qualls, C. R., Uhlenhuth, E. H., & Kellner, R. (1994). Dose–response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Archives of General Psychiatry, 51, 98–108. doi:10.1001/archpsyc.1994.03950020022002.CrossRefPubMedGoogle Scholar
  79. Studerus, E., Gamma, A., & Vollenweider, F. X. (2010). Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE. doi:10.1371/journal.pone.0012412.PubMedPubMedCentralGoogle Scholar
  80. Tart, C. T. (1972). States of consciousness and state-specific sciences. Science, 176, 1203–1210. doi:10.1126/science.176.4040.1203.CrossRefPubMedGoogle Scholar
  81. Vaitl, D. (2012). Veränderte Bewusstseinszustände. Stuttgart: Schattauer.Google Scholar
  82. Van Quekelberghe, R., Altstoetter-Gleich, C., & Hertweck, E. (1991). Assessment schedule for altered states of consciousness: A brief report. The Journal of Parapsychology, 55, 377–390.Google Scholar
  83. Van Quekelberghe, R., Schreiber, W. H., Peter, M., & Caprano, G. (1992). Erfassungssystem veränderter Bewusstseinszustände (EVB): Darstellung des Verfahrens und der Ergebnisse aus Vergleichsuntersuchungen zwischen „Normalen, Heroinabhängigen, Depressiven und Schizophrenen“. Landau: Fachbereich Psychologie der Universität Koblenz-Landau.Google Scholar
  84. Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nature Review Neuroscience, 11, 642–651. doi:10.1038/nrn2884.CrossRefGoogle Scholar
  85. Vollenweider, F. X., Leenders, K. L., & Scharfetter, C. (1997a). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18 F]fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7(1), 9–24.CrossRefPubMedGoogle Scholar
  86. Vollenweider, F. X., Leenders, K. L., & Scharfetter, C. (1997b). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology, 16, 357–372. doi:10.1016/S0893-133X(96)00246-1.CrossRefPubMedGoogle Scholar
  87. Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84(3), 638–654.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Williamson, A. M., & Feyer, A. M. (2000). Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occupational & Environmental Medicine, 57, 649–655. doi:10.1136/oem.57.10.649.CrossRefGoogle Scholar
  89. Yeginer, A. (2000). Forschungsinstrumente der Transpersonalen Psychologie. Oldenburg: BIS.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2016

Authors and Affiliations

  1. 1.Fachbereich Erziehungswissenschaft und PsychologieFreie Universität BerlinBerlinDeutschland
  2. 2.Psychiatrische Universitätsklinik der Charité im St. Hedwig KrankenhausCharité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations