Advertisement

Funktionelle Anatomie und Biomechanik des Hüftgelenks

  • Bernhard HeimkesEmail author
Living reference work entry
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Das Hüftgelenk – mehr als eine Waage. Befasst man sich als Orthopäde oder Unfallchirurg mit der Funktion der Hüfte, wird man zuerst auf das bereits 1935 beschriebene, zeitlos gültige Urmodell von Pauwels stoßen, das weiterhin in neueren Lehrbüchern vertreten ist und vielfach auch in aktuellen Originalarbeiten zitiert wird. So nützlich dieses als Waage gedachte Rechenmodell auch ist, um das Grundprinzip der Hüftbelastung zu verstehen, so notwendig war es auch, dieses Modell zu ergänzen. Entscheidend hierzu haben dreidimensional fortlaufende Messungen an telemetrierten Endoprothesen beigetragen, deren Werte gut mit ebenfalls dreidimensionalen hochkomplexen Rechenmodellen übereinstimmen. Neu hinzugekommen ist, die sagittale Balance des Beckens in die Funktion der Hüfte mit einzubeziehen. Es klären sich hierdurch viele pathologische Befunde, die bisher unverstanden waren. Des Weiteren hat sich gezeigt, dass die Beanspruchung des Schenkelhalses neu gedeutet werden muss, wenn man die Belastung des Trochanter major anatomisch richtig bestimmt. Dementsprechende Berechnungen weisen darauf hin, dass es am koxalen Femurende weder eine Zugbeanspruchung noch spongiöse Zugbündel gibt.

Literatur

  1. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123(5):381–390.  https://doi.org/10.1115/1.1392310CrossRefPubMedGoogle Scholar
  2. Arnold AS, Anderson FC, Pandy MG, Delp SL (2005) Muskular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech 38:2181–2187CrossRefGoogle Scholar
  3. Bergmann G, Rohlmann A, Graichen F (1993) In vivo Messung der Hüftgelenkbelastung 1. Teil: Krankengymnastik. Z Orthop Unfall 127(6):672–679.  https://doi.org/10.1055/s-2008-1040311CrossRefGoogle Scholar
  4. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990CrossRefGoogle Scholar
  5. Boehm HF, Vogel T, Panteleon A, Burklein D, Bitterling H, Reiser M (2007) Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int 18:779–787CrossRefGoogle Scholar
  6. Bonneau N, Baylac M, Gagey O, Tardieu C (2014) Functional integrative analysis of the human hip joint: The threedimensional orientation of the acetabulum and its relation with the orientation of the femoral neck. J Hum Evol 69:55–69CrossRefGoogle Scholar
  7. Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, Prat-Pradal D, Legaye J, Duval-Beaupère G, Pélissier J (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422.  https://doi.org/10.1007/s00586-005-0984-5CrossRefPubMedGoogle Scholar
  8. Correa TA, Crossley KM, Kim HJ, Pandy MG (2010) Contributions of individual muscles to hip joint contact force in normal walking. J Biomech 43(8):1618–1622.  https://doi.org/10.1016/j.jbiomech.2010.02.008CrossRefPubMedGoogle Scholar
  9. Crowninshield RD, Johnston RC, Andrews JG, Brand RA (1978) A biomechanical investigation of the human hip. J Biomech 11:75–85CrossRefGoogle Scholar
  10. Debrunner HU (1975) Biomechanics of the hip joint. I. A new model for the calculation of the forces in the hip joint. Z Orthop Ihre Grenzgeb 113(3):377–388PubMedGoogle Scholar
  11. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (Hrsg) Pediatric spine:principles and practices. Raven Press, New York, S 47Google Scholar
  12. Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462CrossRefGoogle Scholar
  13. Eschweiler J, Asseln M, Damm P, Quack V, Rath B, Bergmann G, Tingart M, Radermacher K (2014) Evaluation of biomechanical models for therapy planning of total hip arthroplasty – direct comparison of computational results with in vivo measurements. Z Orthop Unfall 152(6):603–615.  https://doi.org/10.1055/s-0034-1383221CrossRefPubMedGoogle Scholar
  14. Fetto J, Leali A, Moroz A (2002) Evolution of the Koch model of the biomechanics of the hip: clinical perspective. J Orthop Sci 7:724–730CrossRefGoogle Scholar
  15. Gangnet N, Pomero V, Dumas R, Skalli W, Vital JM (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat 25:424–433.  https://doi.org/10.1007/s00276-003-0154-6CrossRefPubMedGoogle Scholar
  16. Genda E, Iwasaki N, Li G, MacWilliams BA, Barrance PJ, Chao EYS (2001) Normal hip joint contact pressure distribution in single-leg standing – effect of gender and anatomic parameters. J Biomech 34(7):895–905.  https://doi.org/10.1016/S0021-9290(01)00041-0CrossRefPubMedGoogle Scholar
  17. Heimkes B (2016) Die großen Apophysen. Funktionelle Beanspruchung und Bedeutung. Der Orthopäde 45(3):206–212. http://creativecommons.org/licenses/by/4.0CrossRefGoogle Scholar
  18. Heimkes B, Posel P, Plitz W, Jansson V (1993) Forces acting on the juvenile hip joint in the one-legged stance. J Ped Orthop 13(4):431–436CrossRefGoogle Scholar
  19. Heimkes B, Posel P, Plitz W, Zimmer M (1997) Die altersabhängige Kräfteverteilung am koxalen Femurende des normal wachsenden Kindes. Z Orthop Unfall 135(1):17–23.  https://doi.org/10.1055/s-2008-1039549CrossRefGoogle Scholar
  20. Heimkes B, Schmidutz F,Rösner F, Frimberger V, Weber P (2018) Modifizierte Salter-Innominatum-Osteotomie für Erwachsene. Oper Orthop Traumatol.  https://doi.org/10.1007/s00064-018-0560-x. http://creativecommons.org/licenses/by/4.0/deed.de)CrossRefGoogle Scholar
  21. Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7):883–893CrossRefGoogle Scholar
  22. Hěrt J (1994) A new attempt at the interpretation of the functional architecture of the cancellous bone. J Biomech 27:239–242CrossRefGoogle Scholar
  23. Hölzer A, Schröder C, Woiczinski M, Sadoghi P, Scharpf A, Heimkes B, Jansson V (2013) Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study. Comput Methods Prog Biomed 110(1):82–88.  https://doi.org/10.1016/j.cmpb.2012.09.010CrossRefGoogle Scholar
  24. Iglič A, Kralj-Iglič V, Daniel M, Maček-Lebar A (2002) Computer determination of contact stress distribution and size of weight bearing area in the human hip joint. Comput Methods Biomech Biomed Engin 5(2):185–192.  https://doi.org/10.1080/10255840290010300CrossRefPubMedGoogle Scholar
  25. Inman VT (1947) Functional aspects of the abductor muscles of the hip. J Bone Joint Surg Am 29(3):607–619PubMedGoogle Scholar
  26. Jansson V, Heimkes B, Zimmer M (1993) Stress transfer at the femoral bone/bonecement interface as a function of the cement thickness. Arch Orthop Trauma Surg 112(2):65–68CrossRefGoogle Scholar
  27. Kato S, Fok KL, Lee JW, Masani K (2018) Dynamic fluctuation of truncal shift parameters during quiet standing in healthy young individuals. Spine 43:E746–E751.  https://doi.org/10.1097/BRS.0000000000002521CrossRefPubMedGoogle Scholar
  28. Kraenzlein J, Mazoochian F, Fottner A, Birkenmaier C, von Schulze Pellengahr C, Jansson V (2009) The compression-rotation stem: an experimental study on the primary stability of a new revision hip stem. Proc Inst Mech Eng H 203(1):45–52CrossRefGoogle Scholar
  29. Kummer B (1993) Is the Pauwels’ theory of hip biomechanics still valid? A critical analysis, based of modern methods. Anat Anz 175(3):203–210CrossRefGoogle Scholar
  30. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP (2009) „Pelvic tilt“ und truncal inclination. Spine 34(17):E599–E606CrossRefGoogle Scholar
  31. Le Huec JC, Saddiki R, Franke J, Rigal J, Aunoble S (2011) Equilibrium of the human body and the gravity line: the basics. Eur Spine J 20(5):S558–S563.  https://doi.org/10.1007/s00586-011-1939-7CrossRefGoogle Scholar
  32. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103CrossRefGoogle Scholar
  33. Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P (2007) Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 16(2):227–234.  https://doi.org/10.1007/s00586-005-0013-8CrossRefPubMedGoogle Scholar
  34. Meyer GH von (1867) Die Architektur der Spongiosa. Arch Anat Physiol Wissensch Med 34:615–628Google Scholar
  35. Pauwels F (1935) Der Schenkelhalsbruch. Ein mechanisches Problem. Grundlagen des Heilvorganges. Prognose und kausale Therapie. Z Orthop Ihre Grenzgeb 63:1–135Google Scholar
  36. Pauwels F (1954) Über die Verteilung der Spongiosadichte im coxalen Femurende und ihre Bedeutung für die Lehre vom funktionellen Bau des Knochens. Morph Jb 95:35–54Google Scholar
  37. Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30(9):959–965CrossRefGoogle Scholar
  38. Rivière C, Hardijzer A, Lazennec JY, Beaulé P, Muirhead-Allwood S, Cobb J (2017) Spine-hip relations add understandings to the pathophysiology of femoro-acetabular impingement: a systematic review. Orthop Traumatol Surg Res 103(4):549–557.  https://doi.org/10.1016/j.otsr.2017.03.010CrossRefPubMedGoogle Scholar
  39. Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine 31(11):E320–E325CrossRefGoogle Scholar
  40. Rudman KE, Aspden RM, Meakin JR (2006) compression or tension? The stress distribution in the proximal femur. Biomed Eng Online 20(5):12CrossRefGoogle Scholar
  41. Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg Am 35(3):543–558CrossRefGoogle Scholar
  42. Siffert RS (1981) Patterns of deformity of the developing hip. Clin Orthop 160:14–29Google Scholar
  43. Skuban TP, Vogel T, Baur-Melnyk A, Jansson V, Heimkes B (2009) Function-orientated structural analysis of the proximal human femur. Cells Tissues Organs 190(5):247–255.  https://doi.org/10.1159/000210065CrossRefPubMedGoogle Scholar
  44. Stansfield BW, Nicol AC, Paul JP, Kelly IG, Graichen F, Bergmann G (2003) Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech 36(7):929–936CrossRefGoogle Scholar
  45. Steffen JS, Obeid I, Aurouer N, Hauger O, Vital JM, Dubousset J, Skalli W (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19(5):760–767.  https://doi.org/10.1007/s00586-009-1249-5CrossRefPubMedGoogle Scholar
  46. Taylor ME, Tanner KE, Freeman MA, Yettram AL (1996) Stress and strain distribution within the intact femur: compression or bending? Med Eng 18(2):12–31CrossRefGoogle Scholar

Weiterführende Literatur

  1. Brinckmann P, Frobin W, Leivseth G (2000) Orthopädische Biomechanik. Thieme, StuttgartGoogle Scholar
  2. Perry J (2003) Ganganalyse. Norm und Pathologie des Gehens. Urban & Fischer, München/JenaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Orthopädie, Physikalische Medizin und RehabilitationLudwig-Maximilians-Universität, Klinikum der UniversitätMünchenDeutschland

Section editors and affiliations

  • Thomas Wirth
    • 1
  1. 1.Orthopädische KlinikKlinikum Stuttgart – OlgahospitalStuttgartDeutschland

Personalised recommendations