Advertisement

Psychophysische und Neurophysiologische Messverfahren in der Schmerzmedizin

  • Rolf-Detlef TreedeEmail author
Living reference work entry

Latest version View entry history

Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Die Funktionsfähigkeit des somatosensorischen Systems wird durch klinische Sensibilitätsprüfung, quantitative sensorische Testung (QST) oder elektrophysiologische Messverfahren geprüft. Dabei geht es um evozierten Schmerz, der vermindert (Hypalgesie) oder gesteigert (Hyperalgesie, Allodynie) sein kann, sowie um veränderten Tastsinn, Propriozeption oder Temperatursinn. Die QST zeichnet sich durch eine stärkere Formalisierung des Untersuchungsablaufs, die Verwendung von kalibrierten Reizstärken und die Standardisierung der Instruktionen für den Patienten aus und liefert reproduzierbare und vom Untersucher unabhängige Befunde. Elektrophysiologische Messverfahren liefern objektive Befunde zur Funktion des somatosensorischen Systems. Mittels Elektroneurogramms (ENG) und somatosensorisch evozierter Potenziale (SEP) werden die dicken myelinisierten Afferenzen und die Hinterstrangbahnen geprüft. Durch Laser-evozierte Potenziale (LEP) werden Veränderungen der Funktion der dünnen nozizeptiven Afferenzen und des spinothalamischen Traktes erfasst.

Literatur

Literatur zu Abschn. 1

  1. Baron R, Wasner G (1998) Quantitative Thermotestung. Untersuchung der thermosensiblen und nozizeptiven. Afferenzen bei Neuropathien Schmerz 12:209–211Google Scholar
  2. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Freynhagen R, Kennedy JD, Magerl W, Mainka T, Reimer M, Rice AS, Segerdahl M, Serra J, Sindrup S, Sommer C, Tölle T, Vollert J, Treede RD (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272CrossRefGoogle Scholar
  3. Baumgärtner U, Magerl W, Klein T, Hopf HC, Treede RD (2002) Neurogenic hyperalgesia versus painful hypoalgesia: two distinct mechanisms of neuropathic pain. Pain 96:141–151CrossRefGoogle Scholar
  4. Beise RD, Carstens E, Kohllöffel LUE (1998) Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain. Pain 74:275–286CrossRefGoogle Scholar
  5. Chan AW, MacFarlane IA, Bowsher D, Campbell JA (1992) Weighted needle pinprick sensory thresholds: a simple test of sensory function in diabetic peripheral neuropathy. J Neurol Neurosurg Psychiatr 55:56–59CrossRefGoogle Scholar
  6. Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpää M, Jensen TS, Serra J, Treede RD (2010) EFNS guidelines on neuropathic pain assessment; revised 2009. Eur J Neurol 17:1010–1018CrossRefGoogle Scholar
  7. Frost SA, Raja SN, Campbell JN, Meyer RA, Khan AA (1988) Does hyperalgesia to cooling stimuli characterize patients with sympathetically maintained pain (reflex sympathetic dystrophy)? In: Dubner R, Gebhart GF, Bond MR (Hrsg) Proceedings of the Vth world congress on pain. Elsevier, Amsterdam, S 151–156Google Scholar
  8. Fruhstorfer H, Lindblom U, Schmidt WG (1976) Method for quantitative estimation of thermal thresholds in patients. J Neurol Neurosurg Psychiatr 39:1071–1075CrossRefGoogle Scholar
  9. Fruhstorfer H, Gross W, Selbmann O (2001) von Frey hairs: new materials for a new design. Eur J Pain 5:341–342CrossRefGoogle Scholar
  10. Geber C, Scherens A, Pfau D, Nestler N, Zenz M, Tolle T, Baron R, Treede RD, Maier C (2009) Procedure for certification of QST laboratories. Schmerz 23:65–69CrossRefGoogle Scholar
  11. Gracely RH, Grant MAB, Giesecke T (2003) Evoked pain measures in fibromyalgia. Best Pract Res Clin Rheumatol 17:593–609CrossRefGoogle Scholar
  12. Greenspan JD, McGillis SLB (1991) Stimulus features relevant to the perception of sharpness and mechanically evoked cutaneous pain. Somatosens Mot Res 8:137–147CrossRefGoogle Scholar
  13. Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102:1–8CrossRefGoogle Scholar
  14. Koltzenburg M, Lundberg LER, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51:207–219CrossRefGoogle Scholar
  15. Magerl W, Krumova EK, Baron R, Tölle T, Treede RD, Maier C (2010) Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 151:598–605CrossRefGoogle Scholar
  16. Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, Giertmühlen J, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihöfner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Üceyler N, Valet M, Wasner G, Treede RD (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450CrossRefGoogle Scholar
  17. Merskey H, Albe-Fessard D, Bonica JJ, Carmon A, Dubner R, Kerr FWL, Lindblom U, Mumford JM, Nathan PW, Noordenbos W, Pagni CA, Renaer MJ, Sternbach RA, Sunderland S (1979) Pain terms: a list with definitions and notes on usage. Recommended by the IASP subcommittee on taxonomy. Pain 6:249–252CrossRefGoogle Scholar
  18. Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472CrossRefGoogle Scholar
  19. Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114:1167–1175CrossRefGoogle Scholar
  20. Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, Ramneantu I, Waheed W, Stambuk M (2004) Sensory exam with a quantitative tuning fork. Rapid, sensitive and predictive of SNAP amplitude. Neurology 62:461–464CrossRefGoogle Scholar
  21. Pfau DB, Geber C, Birklein F, Treede RD (2012) Quantitative sensory testing of neuropathic pain patients: potential mechanistic and therapeutic implications. Curr Pain Headache Rep 16:199–206CrossRefGoogle Scholar
  22. Rolke R, Magerl W, Andrews-Campbell K, Schalber C, Caspari S, Birklein F, Treede RD (2006) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10:77–88CrossRefGoogle Scholar
  23. Shy ME, Frohman EM, So YT, Arezzo JC, Cornblath DR, Giuliani MJ, Kincaid JC, Ochoa JL, Parry GJ, Weimer LH (2003) Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60:898–904CrossRefGoogle Scholar
  24. Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483:747–758CrossRefGoogle Scholar
  25. Treede RD, Rolke R, Andrews K, Magerl W (2002) Pain elicited by blunt pressure: neurobiological basis and clinical relevance. Pain 98:235–240CrossRefGoogle Scholar
  26. Treede RD, Handwerker HO, Baumgärtner U, Meyer RA, Magerl W (2004) Hyperalgesia and allodynia: taxonomy, assessment, and mechanisms. In: Brune K, Handwerker HO (Hrsg) Hyperalgesia: molecular mechanisms and clinical implications. IASP Press, Seattle, S 1–15Google Scholar
  27. Vollert J, Maier C, Attal N, Bennett DLH, Bouhassira D, Enax-Krumova EK, Finnerup NB, Freynhagen R, Gierthmühlen J, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Magerl W, Ramirez JD, Rice ASC, Schuh-Hofer S, Segerdahl M, Serra J, Shillo PR, Sindrup S, Tesfaye S, Themistocleous AC, Tölle TR, Treede RD, Baron R (2017) Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain 158:1446–1455CrossRefGoogle Scholar
  28. Yarnitsky D (1997) Quantitative sensory testing. Muscle Nerve 20:198–204CrossRefGoogle Scholar
  29. Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125:39–45CrossRefGoogle Scholar
  30. Yarnitsky D, Sprecher E, Zaslansky R, Hemli JA (1995) Heat pain thresholds: normative data and repeatability. Pain 60:329–332CrossRefGoogle Scholar
  31. Ziegler D, Mayer P, Gries FA (1988) Evaluation of thermal, pain, and vibration sensation thresholds in newly diagnosed type 1 diabetic patients. J Neurol Neurosurg Psychiatry 51:1420–1424CrossRefGoogle Scholar
  32. Ziegler EA, Magerl W, Meyer RA, Treede RD (1999) Secondary hyperalgesia to punctate mechanical stimuli: central sensitization to A – fibre nociceptor input. Brain 122:2245–2257CrossRefGoogle Scholar

Literatur zu Abschn. 2

  1. Babiloni C, Brancucci A, Babiloni F, Capotosto P, Carducci F, Cincotti F, Arendt-Nielsen L, Chen ACN, Rossini PM (2003) Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur J Neurosci 18:1692–1700CrossRefGoogle Scholar
  2. Backonja M, Howland EW, Wang J, Smith J, Salinsky M, Cleeland CS (1991) Tonic changes in alpha power during immersion of the hand in cold water. Electroenceph Clin Neurophysiol 79:192–203CrossRefGoogle Scholar
  3. Baron R, Saguer M (1993) Postherpetic neuralgia. Are C-nociceptors involved in signalling and maintenance of tactile allodynia? Brain 116:1477–1496CrossRefGoogle Scholar
  4. Baumgärtner U, Greffrath W, Treede RD (2012) Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiol Clin 42:267–280CrossRefGoogle Scholar
  5. Biasiotta A, Casato M, La Cesa S, Colantuono S, Di Stefano G, Leone C, Carlesimo M, Piroso S, Cruccu G, Truini A (2014) Clinical, neurophysiological, and skin biopsy findings in peripheral neuropathy associated with hepatitis C virus-related cryoglobulinemia. J Neurol 261:725–731CrossRefGoogle Scholar
  6. Birklein F, Riedl B, Neundörfer B, Handwerker HO (1998) Sympathetic vasoconstrictor reflex pattern in patients with complex regional pain syndrome. Pain 75:93–100CrossRefGoogle Scholar
  7. Bromm B, Lorenz J (1998) Neurophysiological evaluation of pain. Electroenceph Clin Neurophysiol 107:227–253CrossRefGoogle Scholar
  8. Bromm B, Jahnke MT, Treede RD (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166CrossRefGoogle Scholar
  9. Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RM, Garcia-Larrea L (2008) 3. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119:1705–1719CrossRefGoogle Scholar
  10. Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpää M, Jensen TS, Serra J, Treede RD (2010) EFNS guidelines on neuropathic pain assessment; revised 2009. Eur J Neurol 17: 1010–1018CrossRefGoogle Scholar
  11. Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M, Pustilnik A, Tracey I, Treede RD, Wager TD (2017) Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 13:624–638CrossRefGoogle Scholar
  12. Doughty CT, Seyedsadjadi R (2018) Approach to peripheral neuropathy for the primary care clinician. Am J Med pii S0002-9343(18):30034–30032.  https://doi.org/10.1016/j.amjmed.2017.12.042CrossRefGoogle Scholar
  13. Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82:351–358CrossRefGoogle Scholar
  14. Ebenezer GJ, Hauer P, Gibbons C, McArthur JC, Polydefkis M (2007) Assessment of epidermal nerve fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol 66:1059–1073CrossRefGoogle Scholar
  15. Fitzek S, Baumgärtner U, Fitzek C, Magerl W, Urban P, Thömke F, Marx J, Treede RD, Stoeter P, Hopf HC (2001) Mechanisms and predictors of chronic facial pain in lateral medullary infarction. Ann Neurol 49:493–500CrossRefGoogle Scholar
  16. García-Larrea L, Convers P, Magnin M, André-Obadia N, Peyron R, Laurent B, Mauguière F (2002) Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125:2766–2781CrossRefGoogle Scholar
  17. Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G (1994) Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain 58:185–193CrossRefGoogle Scholar
  18. Grönroos M, Pertovaara A (1993) Capsaicin-induced central facilitation of a nociceptive flexion reflex in humans. Neurosci Lett 159:215–218CrossRefGoogle Scholar
  19. Hopf HC, Thömke F, Gutmann L (1991) Midbrain vs. pontine medial longitudinal fasciculus lesions: the utilization of masseter and blink reflexes. Muscle Nerve 14:326–330CrossRefGoogle Scholar
  20. Kleggetveit IP, Namer B, Schmidt R, Helås T, Rückel M, Ørstavik K, Schmelz M, Jørum E (2012) High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153:2040–2047CrossRefGoogle Scholar
  21. Lorenz J, Grasedyck K, Bromm B (1996) Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroenceph Clin Neurophysiol 100:165–168CrossRefGoogle Scholar
  22. Papanas N, Ziegler D (2015) Corneal confocal microscopy: recent progress in the evaluation of diabetic neuropathy. J Diab Invest 6:381–389CrossRefGoogle Scholar
  23. Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114: 1167–1175CrossRefGoogle Scholar
  24. Peyron R, Frot M, Schneider F, Garcia-Larrea L, Mertens P, Barral FG, Sindou M, Laurent B, Mauguière F (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. NeuroImage 17:1336–1346CrossRefGoogle Scholar
  25. Ploner M, May ES (2018) Electroencephalography and magnetoencephalography in pain research–current state and future perspectives. Pain 159:206–211CrossRefGoogle Scholar
  26. Schomburg ED (1997) Restrictions on the interpretation of spinal reflex modulation in pain and analgesia research. Pain Forum 6:101–109CrossRefGoogle Scholar
  27. Schüller TB, Hermann K, Baron R (2000) Quantitative assessment and correlation of sympathetic, parasympathetic, and afferent small fiber function in peripheral neuropathy. J Neurol 247:267–272CrossRefGoogle Scholar
  28. Serra J, Bostock H, Solà R, Aleu J, García E, Cokic B, Navarro X, Quiles C (2012) Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 153:42–55CrossRefGoogle Scholar
  29. Spiegel J, Hansen C, Treede RD (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 111:725–735CrossRefGoogle Scholar
  30. Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519CrossRefGoogle Scholar
  31. Torebjörk E (1993) Human microneurography and intraneural microstimulation in the study of neuropathic pain. Muscle Nerve 16:1063–1065CrossRefGoogle Scholar
  32. Treede RD (2005) Funktionsprüfung der nozizeptiven Bahnen durch SEP nach schmerzhaften Laser-Hitzereizen. In: Stöhr M, Dichgans J, Buettner UW, Hess CW (Hrsg) Evozierte Potenziale, 4. Aufl. Springer, Berlin/Heidelberg/New York, S 600–621Google Scholar
  33. Treede RD, Lorenz J, Baumgärtner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314CrossRefGoogle Scholar
  34. Urasaki E, Wada SI, Kadoya C, Tokimura T, Yokota A, Matsuoka S, Fukumura A, Hamada S (1990) Skin and epidural recording of spinal somatosensory evoked potentials following median nerve stimulation: correlation between the absence of spinal N13 and impaired pain sense. J Neurol 237:410–415CrossRefGoogle Scholar
  35. Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD, Libro G, Truini A, DiTrapani G, Puca F, Tonali P, Cruccu G (2003) Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study. Pain 105:57–64CrossRefGoogle Scholar
  36. Wasner G, Schattschneider J, Baron R (2002) Skin temperature side differences – a diagnostic tool for CRPS? Pain 98:19–26CrossRefGoogle Scholar
  37. Willer JC (1985) Studies on pain. Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res 331:105–114CrossRefGoogle Scholar
  38. Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD (2012) Gamma-band oscillations in the primary somatosensory cortex – a direct and obligatory correlate of subjective pain intensity. J Neurosci 32:7429–7438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl für Neurophysiologie, CBTMMedizinische Fakultät Mannheim, Universität HeidelbergMannheimDeutschland

Personalised recommendations