Vom Schmerzsyndrom zur Schmerztherapie

  • Janne GierthmühlenEmail author
  • Ralf Baron
Living reference work entry

Latest version View entry history

Part of the Springer Reference Medizin book series (SRM)


Schmerzen sind im Akutstadium eine protektive Reaktion des Körpers, um sich vor potenziellen Gewebeschädigungen zu schützen. An dieser protektiven Reaktion sind sowohl sensorische Afferenzen als auch somatische und vegetative motorische Efferenzen beteiligt. Daneben spielen assoziierte kognitive, affektive und endokrine Komponenten eine Rolle. Akutschmerzen sind häufig vorübergehender Natur und lassen sich einer Ursache zuordnen, die kausal oder symptomatisch behandelt werden kann. Chronische Schmerzen dagegen unterliegen nicht mehr physiologischen protektiven Reaktionen des Körpers. Sie stellen eine eigenständige Schmerzkrankheit dar.


  1. Baron R (2006) Mechanisms of disease; neuropathic pain – a clinical perspective. Nat Clin Pract Neurol 2:95–106CrossRefPubMedGoogle Scholar
  2. Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819CrossRefPubMedGoogle Scholar
  3. Baron R, Förster M, Binder A (2012) Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol 11:999–1005CrossRefPubMedGoogle Scholar
  4. Baron R, Maier C et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on somatosensory profiles. Pain 158(2):261–272CrossRefPubMedGoogle Scholar
  5. Caterina MJ, Leffler A et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313CrossRefGoogle Scholar
  6. Coull JA, Boudreau D et al (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942CrossRefPubMedGoogle Scholar
  7. Coull JA, Beggs S et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021CrossRefPubMedGoogle Scholar
  8. Cox JJ, Reimann F, Nicholas AK et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898CrossRefGoogle Scholar
  9. Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255CrossRefPubMedGoogle Scholar
  10. DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6CrossRefPubMedGoogle Scholar
  11. Demant DT, Lund K et al (2014) The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155(11):2263–2273CrossRefPubMedGoogle Scholar
  12. Demant DT, Lund K et al (2015) Pain relief with lidocaine 5 % patch in localized peripheral neuropathic pain in relation to pain phenotype: a randomized, double-blind, and placebo-controlled, phenotype panel study. Pain 156(11):2234–2244CrossRefPubMedGoogle Scholar
  13. Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fields HL, Rowbotham M et al (1998) Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis 5:209–227CrossRefGoogle Scholar
  15. Geber C, Magerl W, Fondel R, Fechir M, Rolke R, Vogt T, Treede RD, Birklein F (2008) Numbness in clinical and experimental pain – a cross-sectional study exploring the mechanisms of reduced tactile function. Pain 139:73–81CrossRefPubMedGoogle Scholar
  16. Hains BC, Saab CY et al (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839CrossRefPubMedGoogle Scholar
  17. Hehn C von, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652Google Scholar
  18. Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627CrossRefPubMedGoogle Scholar
  19. Hudson LJ, Bevan S et al (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114CrossRefPubMedGoogle Scholar
  20. Jänig W (2008) Autonomic nervous system and pain. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (Hrsg) The senses: a comprehensive reference, vol 5: pain. Elsevier Academic Press, San Diego, S 193–226CrossRefGoogle Scholar
  21. Ji RR, Woolf CJ (2001) Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 8:1–10CrossRefPubMedGoogle Scholar
  22. Johanek L, Shim B, Meyer A (2006) Primary hyperalgesia and nociceptor sensitization. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 35–47Google Scholar
  23. Konopka KH, Harbers M et al (2012) Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study. PLoS One 7(5):e37524CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lai JJ, Hunter C et al (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297CrossRefPubMedGoogle Scholar
  25. Loeser JD, Ward AA Jr, White LE Jr (1968) Deafferentiation of the -human spinal cord neurons. J Neurosurg 29:48–50CrossRefPubMedGoogle Scholar
  26. Lombard MC, Larabi Y (1983) Electrophysiological study of cervical dorsal horn cells in partially deafferented rats. In: Bonica JJ (Hrsg) Advances in pain research and therapy. Raven, New York, S 147–154Google Scholar
  27. Luo ZD, Chaplan SR et al (2001) Upregulation of dorsal root ganglion (alpha)2 (delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 21:1868–1875CrossRefPubMedGoogle Scholar
  28. Maier C, Baron R, Tölle T et al (2012) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450CrossRefGoogle Scholar
  29. Marchand F, Perretti M et al (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532CrossRefPubMedGoogle Scholar
  30. McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16CrossRefPubMedPubMedCentralGoogle Scholar
  31. McKemy DD, Neuhausser WM et al (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58CrossRefGoogle Scholar
  32. McMahon SB, Cafferty WB et al (2005) Immune and glial cell factors as pain mediators and modulators. Exp Neurol 192:444–462CrossRefPubMedGoogle Scholar
  33. Milligan ED, O'Connor KA et al (2001) Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci 21:2808–2819CrossRefPubMedGoogle Scholar
  34. Nickel FT, Seifert F et al (2011) Mechanisms of neuropathic pain. Eur Neuropsychopharmacol 22:81–91CrossRefPubMedGoogle Scholar
  35. Nystrom B, Hagbarth KE (1981) Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett 27:211–216CrossRefPubMedGoogle Scholar
  36. Oaklander AL, Brown JM (2004) Unilateral nerve injury produces bilateral loss of distal innervation. Ann Neurol 55:639–644CrossRefPubMedGoogle Scholar
  37. Oaklander AL, Romans K et al (1998) Unilateral postherpetic neuralgia is associated with bilateral sensory neuron damage. Ann Neurol 44:789–795CrossRefGoogle Scholar
  38. Obata K, Katsura H et al (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472CrossRefPubMedGoogle Scholar
  40. Ochoa J, Torebjörk HE et al (1982) Abnormal spontaneous activity in single sensory nerve fibers in humans. Muscle Nerve 5(9S):S74–S77PubMedGoogle Scholar
  41. Omana-Zapata I, Khabbaz MA et al (1997) Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 72:41–49CrossRefPubMedGoogle Scholar
  42. Ossipov MH, Porreca F (2006) Descending excitatory systems. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 193–210Google Scholar
  43. Pertovaara A, Almeida A (2006) Descending inhibitory systems. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 179–192Google Scholar
  44. Polgar E, Gray S et al (2004) Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111:144–150CrossRefPubMedGoogle Scholar
  45. Price MP, McIlwrath SL et al (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083CrossRefPubMedGoogle Scholar
  46. Reimer M, Rempe T, Diedrichs C, Baron R, Gierthmühlen J (2016) Sensitization of the nociceptive system in complex regional pain syndrome. PLoSOne 11(5):e0154553CrossRefGoogle Scholar
  47. Shamash S, Reichert F et al (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060CrossRefPubMedGoogle Scholar
  48. Sommer C (2001) Cytokines in neuropathic pain. Anaesthesist 50:416–426CrossRefPubMedGoogle Scholar
  49. Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375–382CrossRefPubMedGoogle Scholar
  50. Vetter I, Deuis JR et al (2017) Nav1.7 as a pain target – from gene to pharmacology. Pharmacol Ther 172:73–100CrossRefPubMedPubMedCentralGoogle Scholar
  51. Watkins LR, Milligan ED et al (2001a) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455CrossRefPubMedGoogle Scholar
  52. Watkins LR, Milligan ED et al (2001b) Spinal cord glia: new players in pain. Pain 93:201–205CrossRefPubMedGoogle Scholar
  53. Wieseler-Frank J, Maier SF et al (2004) Glial activation and pathological pain. Neurochem Int 45:389–395CrossRefPubMedGoogle Scholar
  54. Wood JN, Boorman JP et al (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61:55–71CrossRefPubMedGoogle Scholar
  55. Yarnitsky D, Granot M et al (2012) Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153:1193–1198CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Sektion Neurologische Schmerzforschung u. –therapieUniversitätsklinikum Schleswig-Holstein, Campus KielKielDeutschland

Personalised recommendations