Advertisement

Zerebrale Mechanismen – Bildgebung (Schmerzmatrix – Schmerznetzwerk)

  • Anne Stankewitz
  • Till Sprenger
  • Michael Valet
  • Thomas R. Tölle
Living reference work entry

Latest version View entry history

Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Der Einsatz funktioneller Bildgebungsverfahren zur Untersuchung experimenteller und klinischer Schmerzzustände hat in der Vergangenheit maßgeblich zum Verständnis neuronaler Prozesse und deren Lokalisation im Gehirn beigetragen. Vor der Entwicklung dieser Verfahren basierte unser Wissen über die Schmerzverarbeitung bzw. die funktionelle Anatomie v. a. auf molekularbiologischen und elektrophysiologischen Befunden (Penfield und Boldrey (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443; Stowell (1984) Event related brain Potenzials and human pain: a first objective overview. Int J Psychophysiol 1:137–151), Tierversuchen und Läsionsstudien (Head und Holmes (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254; Folz und White (1962) Pain ‚relief‘ by frontal cingulumotomy. J Neurosurg 19:89–100; Berthier et al. (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24:41–49). Im Gegensatz dazu stehen heute mit den modernen bildgebenden Verfahren Instrumente zur Verfügung, die nichtinvasive Untersuchungen in vivo und bei vollem Bewusstsein erlauben. Diese Techniken ermöglichen völlig neue Einblicke in die Schmerzverarbeitung, die zeitliche Dynamik sowie die Modulation.

Literatur

  1. Ametamey SM, Samnick S, Leenders KL, Vontobel P, Quack G, Parsons CG, Schubiger PA (1999) Fluorine-18 radiolabelling, biodistribution studies and preliminary PET evaluation of a new memantine derivative for imaging the NMDA receptor. J Recept Signal Transduct Res 19:129–141PubMedCrossRefGoogle Scholar
  2. Ametamey SM, Bruehlmeier M, Kneifel S, Kokic M, Honer M, Arigoni M, Buck A, Burger C, Samnick S, Quack G, Schubiger PA (2002) PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol 29:227–231PubMedCrossRefGoogle Scholar
  3. Andersson JL, Lilja A, Hartvig P, Langstrom B, Gordh T, Handwerker H, Torebjork E (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 117:192–199PubMedCrossRefGoogle Scholar
  4. Apkarian AV (2010) Human brain imaging studies of chronic pain: translational opportunities. In: Kruger L, Light AR (Hrsg) Translational pain research: from mouse to man. CRC Press, Boca RatonGoogle Scholar
  5. Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484PubMedCrossRefGoogle Scholar
  6. Ashburner J, Friston K (2000) Voxel-based morphometry – the methods. Neuroimage 11:805–821PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26:12165–12173PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baliki MN, Geha PY, Apkarian AV (2007) Spontaneous pain and brain activity in neuropathic pain: functional MRI and pharmacologic functional MRI studies. Curr Pain Headache Rep 11:171–177PubMedCrossRefGoogle Scholar
  9. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain disrupting the default-mode network dynamics. J Neurosci 28:1398–1403PubMedCrossRefGoogle Scholar
  10. Baliki MN, Geha PY, Fields HL, Apkarian AV (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66:149–160PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125:310–319PubMedCrossRefGoogle Scholar
  12. Bencherif B, Fuchs PN, Sheth R, Dannals RF, Campbell JN, Frost JJ (2002) Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 99:589–598PubMedCrossRefGoogle Scholar
  13. Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24:41–49PubMedCrossRefGoogle Scholar
  14. Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8–15PubMedCrossRefGoogle Scholar
  15. Bingel U, Rose M, Glascher J, Buchel C (2007) fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55:157–167PubMedCrossRefGoogle Scholar
  16. Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tölle TR (2008) The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex 18:2523–2531PubMedCrossRefGoogle Scholar
  17. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala prefrontal insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326–1336PubMedCrossRefGoogle Scholar
  18. Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C (2002) Dissociable neural responses related to pain intensity stimulus intensity and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976PubMedCrossRefGoogle Scholar
  19. Burgmer M, Gaubitz M, Konrad C, Wrenger M, Hilgart S, Heuft G, Pfleiderer B (2009) Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med 71:566–573PubMedCrossRefGoogle Scholar
  20. Burns HD, Van Laere K, Sanabria-Bohórquez S, Hamill TG, Bormans G, Eng WS, Gibson R, Ryan C, Connolly B, Patel S, Krause S, Vanko A, Van Hecken A, Dupont P, De Lepeleire I, Rothenberg P, Stoch SA, Cote J, Hagmann WK, Jewell JP, Lin LS, Liu P, Goulet MT, Gottesdiener K, Wagner JA, de Hoon J, Mortelmans L, Fong TM, Hargreaves RJ (2007) [18F]MK-9470 a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A 104:9800–9805PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cauda F, Sacco K, D’Agata F, Duca S, Cocito D, Geminiani G, Migliorati F, Isoardo G (2009) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10:138PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coghill RC, Gilron I, Iadarola MJ (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85:2602–2612PubMedCrossRefGoogle Scholar
  23. Coull J, Nobre A (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435PubMedCrossRefGoogle Scholar
  24. Craig A, Reiman E, Evans A, Bushnell M (1996) Functional imaging of an illusion of pain. Nature 384:258–260PubMedCrossRefGoogle Scholar
  25. Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Geraud G (2007) A PET study of photophobia during spontaneous migraine attacks. Neurology 76:213–218CrossRefGoogle Scholar
  26. Duncan JS (1999) Positron emission tomography receptor studies. Adv Neurol 79:893–899PubMedGoogle Scholar
  27. Eippert F, Finsterbusch J, Bingel U, Büchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 326:404PubMedCrossRefGoogle Scholar
  28. Favilla S, Huber A, Pagnoni G, Lui F, Facchin P, Cocchi M, Baraldi P, Porro CA (2014) Ranking brain areas encoding the perceived level of pain from fMRI data. Neuroimage 90:153–162PubMedCrossRefGoogle Scholar
  29. Folz E, White L (1962) Pain „relief“ by frontal cingulumotomy. J Neurosurg 19:89–100CrossRefGoogle Scholar
  30. Fritz HC, McAuley JH, Wittfeld K, Hegenscheid K, Schmidt CO, Langner S, Lotze M (2016) Chronic back pain is associated with decreased prefrontal and anterior insular gray matter: results from a population-based cohort study. J Pain 17:111–118PubMedCrossRefGoogle Scholar
  31. Frost JJ (1993) Receptor imaging by PET and SPECT: focus on the opiate receptor. J Recept Res 13:39–53PubMedCrossRefGoogle Scholar
  32. Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128:88–100PubMedCrossRefGoogle Scholar
  33. Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV (2008) Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 138:641–656PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hagelberg N, Forssell H, Aalto S, Rinne JO, Scheinin H, Taiminen T, Någren K, Eskola O, Jääskeläinen SK (2003) Altered dopamine D2 receptor binding in atypical facial pain. Pain 106:43–48PubMedCrossRefGoogle Scholar
  35. Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK (2007) Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 27:10000–10006PubMedCrossRefGoogle Scholar
  36. Harris RE, Zubieta JK, Scott DJ, Napadow V, Gracely RH, Clauw DJ (2009) Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs). Neuroimage 47:1077–1085PubMedPubMedCentralCrossRefGoogle Scholar
  37. Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254CrossRefGoogle Scholar
  38. Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86:402–411PubMedCrossRefGoogle Scholar
  39. Jaaskelainen SK, Rinne JO, Forssell H, Tenovuo O, Kaasinen V, Sonninen P, Bergman J (2001) Role of the dopaminergic system in chronic pain – a fluorodopa-PET study. Pain 90:257–260PubMedCrossRefGoogle Scholar
  40. Jones AK, Luthra SK, Maziere B, Pike VW, Loch C, Crouzel C, Syrota A, Jones T (1988) Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Methods 23:121–129PubMedCrossRefGoogle Scholar
  41. Jones AK, Qi LY, Fujirawa T, Luthra SK, Ashburner J, Bloomfield P, Cunningham VJ, Itoh M, Fukuda H, Jones T (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126:25–28PubMedCrossRefGoogle Scholar
  42. Jones AK, Cunningham VJ, Ha-Kawa S, Fujiwara T, Luthra SK, Silva S, Derbyshire S, Jones T (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33:909–916PubMedCrossRefGoogle Scholar
  43. Jones AK, Kitchen ND, Watabe H, Cunningham VJ, Jones T, Luthra SK, Thomas DG (1999) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19:803–808PubMedCrossRefGoogle Scholar
  44. Jones AK, Watabe H, Cunningham VJ, Jones T (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8:479–485PubMedCrossRefGoogle Scholar
  45. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, Park KW, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28:598–604PubMedCrossRefGoogle Scholar
  46. Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K (2010) Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30:53–61PubMedCrossRefGoogle Scholar
  47. Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27:4004–4007PubMedCrossRefGoogle Scholar
  48. Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345:1428–1429PubMedCrossRefGoogle Scholar
  49. Leone M, Franzini A, Felisati G, Mea E, Curone M, Tullo V, Broggi G, Bussone G (2005) Deep brain stimulation and cluster headache. Neurol Sci 26(Suppl 2):s138–s139PubMedCrossRefGoogle Scholar
  50. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  51. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69:827–834PubMedCrossRefGoogle Scholar
  52. Magis D, Bruno MA, Fumal A, Gerardy PY, Hustinx R, Laureys S, Schoenen J (2011) Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol 11:25PubMedPubMedCentralCrossRefGoogle Scholar
  53. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137:232–241PubMedCrossRefGoogle Scholar
  54. May A (2008) Chronic pain may change the structure of the brain. Pain 137:7–15PubMedCrossRefGoogle Scholar
  55. May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (1998) Hypothalamic activation in cluster headache attacks. Lancet 352:275–278PubMedCrossRefGoogle Scholar
  56. May A, Ashburner J, Buchel C, McGonigle DJ, Friston KJ, Frackowiak RS, Goadsby PJ (1999) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5:836–838PubMedCrossRefGoogle Scholar
  57. May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55:1328–1335PubMedCrossRefGoogle Scholar
  58. Melzack R, Casey K (1968) Sensory motivational and central control determinants of pain. CC Thomas, SpringfieldGoogle Scholar
  59. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D (2008) Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One 3:e3799PubMedPubMedCentralCrossRefGoogle Scholar
  60. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555PubMedPubMedCentralCrossRefGoogle Scholar
  61. Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, Goadsby PJ, Diener HC, Katsarava Z (2009) Gray matter changes related to chronic posttraumatic headache. Neurology 73:978–983PubMedCrossRefGoogle Scholar
  62. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, Theysohn N, Blex S, Diener HC, Katsarava Z (2012) Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage 74:352–358CrossRefGoogle Scholar
  63. Otti A, Guendel H, Henningsen P, Zimmer C, Wohlschlaeger AM, Noll-Hussong M (2013) Functional network connectivity of pain-related resting state networks in somatoform pain disorder: an exploratory fMRI study. J Psychiatry Neurosci 38:57–65PubMedPubMedCentralCrossRefGoogle Scholar
  64. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRefGoogle Scholar
  65. Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295:1737–1740PubMedCrossRefGoogle Scholar
  66. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122:1765–1780PubMedCrossRefGoogle Scholar
  67. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30:263–288PubMedCrossRefGoogle Scholar
  68. Qiu E, Wang Y, Ma L, Tian L, Liu R, Dong Z, Xu X, Zou Z, Yu S (2013) Abnormal brain functional connectivity of the hypothalamus in cluster headaches. PLoS One 8:e57896PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971PubMedCrossRefPubMedCentralGoogle Scholar
  70. Rees G, Howseman A, Josephs O, Frith C, Friston K, Frackowiak R (1997) Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6:270–278PubMedCrossRefGoogle Scholar
  71. Riedl V, Valet M, Wöller A, Sorg C, Vogel D, Sprenger T, Boecker H, Wohlschläger A, Tölle TR (2011) Repeated pain induces adaption of intrinsic brain activity to reflect past and predict future pain. Neuroimage 57:206–213PubMedCrossRefGoogle Scholar
  72. Robinson ME, Craggs JG, Price DD, Perlstein WM, Staud R (2011) Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain 12:436–443PubMedCrossRefGoogle Scholar
  73. Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37:765–770CrossRefGoogle Scholar
  74. Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 29:13746–13750PubMedCrossRefGoogle Scholar
  75. Sadato N, Yonekura Y, Yamada H, Nakamura S, Waki A, Ishii Y (1998) Activation patterns of covert word generation detected by fMRI: comparison with 3D PET. J Comput Assist Tomogr 22:945–952PubMedCrossRefGoogle Scholar
  76. Sakai Y, Dobson C, Diksic M, Aube M, Hamel E (2008) Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology 70:431–439PubMedCrossRefGoogle Scholar
  77. Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, Blecha J, Murphy ST, Hawkins RA, Sprenger T, VanBrocklin HF, Goadsby PJ (2016) Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain 139:1994–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schmidt-Wilcke T, Gänssbauer S, Neuner T, Bogdahn U, May A (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28:1–4PubMedCrossRefGoogle Scholar
  79. Schulte LH, Allers A, May A (2017) Hypothalamus as a mediator of chronic migraine: Evidence from high-resolution fMRI. Neurology 88:2011–2016PubMedCrossRefGoogle Scholar
  80. Schulz E, May ES, Postorino M, Tiemann L, Nickel MM, Witkovsky V, Schmidt P, Gross J, Ploner M (2015) Prefrontal gamma oscillations encode tonic pain in humans. Cereb Cortex 25:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  81. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I (2015) The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 18:499–500PubMedCrossRefGoogle Scholar
  82. Shiue CY, Vallabhahosula S, Wolf AP, Dewey SL, Fowler JS, Schlyer DJ, Arnett CD, Zhou YG (1997) Carbon-11 labelled ketamine-synthesis distribution in mice and PET studies in baboons. Nucl Med Biol 24:145–150PubMedCrossRefGoogle Scholar
  83. Sprenger T, Boecker H, Tölle T, Bussone G, May A, Leone M (2004) Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 62:516–517PubMedCrossRefGoogle Scholar
  84. Sprenger T, Valet M, Boecker H, Henriksen G, Spilker ME, Willoch F, Wagner K, Wester HJ, Tölle TR (2006a) Opioidergic activation in the medial pain system after heat pain. Pain 122:63–67PubMedCrossRefGoogle Scholar
  85. Sprenger T, Willoch F, Miederer M, Schindler F, Valet M, Berthele A, Spilker ME, Förderreuther S, Straube A, Stangier I, Wester HJ, Tölle TR (2006b) Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology 11:1108–1110CrossRefGoogle Scholar
  86. Sprenger T, Ruther K, Valet M, Boecker H, Berthele A, Woller A, Pfaffenrath V, Tölle TR (2007) Change of metabolism in frontal brain circuits in cluster headache. Cephalalgia 27:1033–1042PubMedCrossRefGoogle Scholar
  87. Stankewitz A, Aderjan D, Eippert F, May A (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31:1937–1943PubMedCrossRefGoogle Scholar
  88. Stowell H (1984) Event related brain potentials and human pain: a first objective overview. Int J Psychophysiol 1:137–151PubMedCrossRefGoogle Scholar
  89. Tashiro M, Kubota K, Itoh M, Yoshioka T, Yoshida M, Nakagawa Y, Bereczki D, Sasaki H (1999) Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology 8:283–286PubMedCrossRefGoogle Scholar
  90. Tölle T, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgänsberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47PubMedCrossRefGoogle Scholar
  91. Tracey I (2007) Neuroimaging of pain mechanisms. Curr Opin Support Palliat Care 1:109–116PubMedCrossRefGoogle Scholar
  92. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22:2748–2752PubMedCrossRefGoogle Scholar
  93. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tölle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109:399–408PubMedCrossRefGoogle Scholar
  94. Valet M, Gündel H, Sprenger T, Sorg C, Mühlau M, Zimmer C, Tölle TR (2009) Patients with somatoform pain disorder show gray-matter loss in pain processing structures – a voxel-based morphometric study. Psychosom Med 71:49–56PubMedCrossRefGoogle Scholar
  95. Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443PubMedGoogle Scholar
  96. Vogt B, Derbyshire S, Jones A (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8:1461–1473PubMedCrossRefGoogle Scholar
  97. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368:1388–1397PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wagner KJ, Willoch F, Kochs E, Siessmeier T, Tölle T, Schwaiger M, Bartenstein P (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94:732–739PubMedCrossRefGoogle Scholar
  99. Wagner KJ, Sprenger T, Kochs EF, Tölle TR, Valet M, Willoch F (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a PET activation study using remifentanil. Anesthesiology 106:548–556PubMedCrossRefGoogle Scholar
  100. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660PubMedCrossRefGoogle Scholar
  101. Willoch F, Schindler F, Wester H, Empl M, Straube A, Schwaiger M, Conrad B, Tölle TR (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a 11C-diprenorphine PET study. Pain 108:213–220PubMedCrossRefGoogle Scholar
  102. Winder DG, Egli RE, Schramm NL, Matthews RT (2002) Synaptic plasticity in drug reward circuitry. Curr Mol Med 2:667–676PubMedCrossRefGoogle Scholar
  103. Wood PB, Patterson JC 2nd, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8:51–58PubMedCrossRefGoogle Scholar
  104. Xue T, Yuan K, Zhao L, Yu D, Zhao L, Dong T, Cheng P, von Deneen KM, Qin W, Tian J (2012) Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One 7:e52927PubMedPubMedCentralCrossRefGoogle Scholar
  105. Xue T, Yuan K, Cheng P, Zhao L, Zhao L, Yu D, Dong T, von Deneen KM, Gong Q, Qin W, Tian J (2013) Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 26(9):1051–1058.  https://doi.org/10.1002/nbm.2917. PubMedCrossRefGoogle Scholar
  106. Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100:1740–1748PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, Meyer C, Koeppe R, Stohler C (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 13:311–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Anne Stankewitz
    • 1
  • Till Sprenger
    • 2
  • Michael Valet
    • 3
  • Thomas R. Tölle
    • 1
  1. 1.Neurologische Klinik und Poliklinik der Technischen Universität MünchenKlinikum rechts der IsarMünchenDeutschland
  2. 2.Neurologisch-Neurochirurgische Poliklinik und Abteilung für NeuroradiologieUniversitätsspital BaselBaselSchweiz
  3. 3.Benedictus Krankenhaus FeldafingFeldafingDeutschland

Personalised recommendations