Advertisement

Geometrical Reference Systems

  • Manuela SeitzEmail author
  • Detlef Angermann
  • Michael Gerstl
  • Mathis Bloßfeld
  • Laura Sánchez
  • Florian Seitz
Reference work entry

Abstract

Geometrical reference systems are the basis for the observation and quantification of processes in the Earth’s system, the study of Earth rotation, and the computation of satellite orbits, positioning, navigation, time realization, land surveying, and engineering. The reference systems applied today are the International Terrestrial Reference System (ITRS) co-rotating with the Earth and the International Celestial Reference System (ICRS), an inertial system. Both systems are defined and realized by the International Earth Rotation and Reference Systems Service (IERS).The systems are realized by reference frames constituted by physical points, i.e., the reference points of observation instruments fixed to the Earth’s crust or the reference points of radio sources, respectively.The reference frames are computed from the observations of VLBI in case of ICRS and by a combination of VLBI, SLR, GNSS, and DORIS data in case of ITRS. Each of the techniques provides an individual sensitivity regarding the frame parameters and contributes in a unique way to the ITRS realization.The ITRS realization is performed by two or more so-called IERS Combination Centres today. The combination of the space techniques by the centers is performed at different levels of the Gauß-Markov model, the normal equation, and the parameter level. Therefore, the strategies differ with respect to rigorousness and hence their dependence on operator decisions.The most rigorous combination method is the combination at the observation level, but the softwares able to handle all four observation techniques are still under development so that this strategy is not yet applied for IERS product generation.Due to the low regional density of observing stations, the ITRS realizations has to be densified by regional reference frames, to allow for precise applications on a regional basis. The regional frames are based on GNSS stations only.The strategies applied for the realization of reference systems are continuously refined in the recent years. Anyway, further efforts are necessary to improve the strategies with respect to their rigorousness in order to meet the accuracy requirements of applications related to the quantification of the global change, which are about 1 mm for positions and 1 mm/year for long-term trends.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Very Long Basline Interferometry Satellite Laser Range Earth Orientation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adam J (2008) Update of the history of the International Association of Geodesy. J Geod 82: 662–674Google Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4CrossRefGoogle Scholar
  3. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller S, Tesmer V (2004) ITRS Combination Centre at DGFI – A Terrestrial Reference Frame Realization 2003, Deutsche Geodätische Kommission, Reihe B, MünchenGoogle Scholar
  4. Angermann D, Seitz M, Drewes H (2012) Global Terrestrial Reference Systems and Their Realizations. In: Xu G (ed) Sciences of geodesy – II. Springer, pp 97–132. doi:10.1007/978-3-642-28000-9_3Google Scholar
  5. Beutler G, Drewes H, Verdun A (2004) The new structure of the International Association of Geodesy viewed from the perspective of history. J Geod 77:566–575CrossRefGoogle Scholar
  6. Bloßfeld M, Müller H, Seitz M, Angermann D (2011) Benefits of SLR in epoch reference frames. In: Proceedings of the 17th ILRS workshop, Bad Kötzting, GermanyGoogle Scholar
  7. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84:201–219. doi:10.1007/s00190-009-0357-7CrossRefGoogle Scholar
  8. Brunini C, Sánchez L, Drewes H, Costa S, Mackern V, Martinez W, Seemüller W, da Silva A (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth, International Association of Geodesy Symposia, vol 136, pp 3–10. doi:10.1007/978-3-642-20338-1_1CrossRefGoogle Scholar
  9. Capitaine N, Gambis D, McCarthy D, Pétit G, Ray J, Richter B, Rothacher M, Standish M, Vondrak J (eds) (2002) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions 2002, IERS Technical Note 29, Verlag des Bundesamts fur Kartographie und Geodäsie, Frankfurt am Main, available at http://www.iers.org/iers/publications/tn/tn29/
  10. DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94GL02118CrossRefGoogle Scholar
  11. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3CrossRefGoogle Scholar
  12. Drewes H, Heidbach O (2009) The 2009 horizontal velocity field for South America and the Caribbean. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136, pp 657–664. doi:10.1007/978-3-642-20338-1_81CrossRefGoogle Scholar
  13. Feissel M, Migard F (1998) The adoption of the ICRS on 1 January 1998: meaning and consequences. Astron Astrophys 331:L33–L36Google Scholar
  14. Hazard C, Sutton J, Argue A, Kenworthy C, Morrison L, Murray C (1971) Accurate radio and optical positions of 3C273B. Nat Phys Sci 233:89–91. doi:10.1038/physci233089a0CrossRefGoogle Scholar
  15. IERS (2009) The second realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. In: Fey A, Gordon D, Jacobs C (eds) Presented on behalf of the IERS/IVS Working Group (2009), IERS Technical Note 35, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am MainGoogle Scholar
  16. IERS (2010) IERS Conventions (2010). Pétit G, Luzum B (eds) IERS Technical Note 36, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am MainGoogle Scholar
  17. Johnston G, Dawson J (2004) The 2003 Mount Pleasant (Hobart) radio telescope local tie survey. Geoscience Australia, Record 2004/21Google Scholar
  18. Koch K (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin/Heidelberg/New YorkCrossRefzbMATHGoogle Scholar
  19. Lieske J, Lederle T, Fricke W, Morando B (1977) Expression for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants. Astron Astrophys 58:1–16Google Scholar
  20. Ma C, Arias E, Eubanks T, Fey A, Gontier A, Jacobs C, Sovers O, Archinal B, Charlot P (1997) The International Celestial Reference Frame Realized by VLBI. In: Ma C, Feissel M (eds) Definition and Realization of the International Celestial Reference System by VLBI Astrometry of Extragalactic Objects. IERS Technical Note 23, Observatoire de ParisGoogle Scholar
  21. Ma C, Arias E, Eubanks T, Fey A, Gontier A, Jacobs C, Sovers O, Archinal B, Charlot P (1998) The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry. Astron J 116(1):516–546. doi:10.1086/300408CrossRefGoogle Scholar
  22. Mathews P, Herring T, Buett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth, and insights into the Earth’s interior. J Geophys Res 107(B4):ETG 3-1–ETG 3-26. doi:10.1029/2001JB000390Google Scholar
  23. Michel V, Roesch G, Long J (2005) Hartebeesthoek Co-Location Survey. In: Richter B, Dick W, Schwegmann W (eds) Proceedings of the IERS workshop on site co-location. IERS Technical Note 33:100–109, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am MainGoogle Scholar
  24. Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System – Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer. ISBN:978-3-642-02686-7Google Scholar
  25. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6CrossRefGoogle Scholar
  26. Rothacher M (2000) Towards an integrated global geodetic observing system. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS). International Association of Geodesy Symposia, vol 120. Springer, pp 41–52. doi:10.1007/978-3-642-59745-9_7Google Scholar
  27. Sánchez L, Seemüller W, Drewes H, Mateo L, González G, Silva A, Pampillón J, Martinez W, Cioce V, Cisneros D, Cimbaro S (2013) Long-term stability of the SIRGAS reference frame and episodic station movements caused by the seismic activity in the SIRGAS region. In: Altamimi Z, Collilieux X (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, pp 153–161. doi:10.1007/978-3-642-32998-2_24Google Scholar
  28. Sarti P, Sillard P, Vittuari L (2004) Surveying co-located space-geodetic instruments for ITRF computation. J Geod 78(3):210–222. doi:10.1007/s00190-004-0387-0CrossRefGoogle Scholar
  29. Schlüter W. and Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):379–387. doi:10.1007/s00190-006-0131-zCrossRefGoogle Scholar
  30. Schön S. and Kutterer H (2006) A comparative analysis of uncertainty modelling in GPS data analysis. In: Tregoning P, Rizos C (eds) Dynamic Planet. International Association of Geodesy Symposia, vol 130, pp 137–142. doi:10.1007/978-3-540-49350-1_22CrossRefGoogle Scholar
  31. Seeber G (2013) Satellite Geodesy. de Gruyter. ISBN:9783110175493Google Scholar
  32. Seidelmann K (1982) 1980 IAU Nutation: The Final Report of the IAU Working Group on Nutation. Celest Mech 27:79–106. doi:10.1007/BF01228952MathSciNetCrossRefGoogle Scholar
  33. Seitz F, Schmidt M (2005) Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. J Geophys Res 110(B11):EID B11406. American Geophysical Union. ISSN:0148-0227, doi:10.1029/2005JB003826Google Scholar
  34. Seitz F, Schuh H (2011) Earth rotation. In: Xu G (ed) Sciences of Geodesy I: Advances and Future Directions. Springer, pp 185–227. ISBN (Print):978-3-642-11740-4, ISBN (Online):978-3-642-11741-1, doi:10.1007/978-3-642-11741-1_6Google Scholar
  35. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 630, MünchenGoogle Scholar
  36. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012a) The 2008 DGFI realization of ITRS: DTRF2008. J Geod 86(12):1097–1123. doi:0.1007/s00190-012-0567-2Google Scholar
  37. Seitz M, Steigenberger P, Artz T (2012b) Consistent adjustment of combined terrestrial and celestial reference frames. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia, vol 139, pp 215–221, Springer, doi: 10.1007/978-3-642-37222-3_28, 2014Google Scholar
  38. Seitz M, Steigenberger P, Artz T (2012c) Consistent realization of ITRS and ICRS. In: Behrend D, Baver K (eds) Launching the next-generation IVS network. International VLBI Service for Geodesy and Astrometry 2012 General Meeting Proceedings, NASA/CP-2012-217502: 314-318Google Scholar
  39. Seitz M, Angermann D, Drewes H (2013) Accuracy assessment of ITRS 2008 realization of DGFI: DTRF2008. In: Altamimi Z, Collilieux X (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, pp 87–93. doi:10.1007/978-3-642-32998-2_15Google Scholar
  40. Sengenes P, Tavernier G, Granier J (2002) Doppler measurement principle in a brief overview of Doris system evolutions. Presentation at the IDS workshop 2002, Biarritz, FranceGoogle Scholar
  41. Sovers O, Fanselow J, Jacobs C (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70:1393–1454. doi:10.1103/RevModPhys.70.1393CrossRefGoogle Scholar
  42. Takahashi F, Kondo T, Takahashi Y, Koyama Y (2000) Very Long Baseline Interferometer. Wave Summit Course. Ohmsha, Ltd./IOS Press. ISBN:1-58603-076-0Google Scholar
  43. Teunissen P, Kleusberg A (1998) GPS for Geodesy. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  44. Willis P, Boucher C, Fagard H, Altamimi Z (2005) Geodetic application of the DORIS system at the French Institut Geographique National. C R Geosci 337(7):653–662. doi:10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  45. Willis P, Fagard H, Ferrage P, Lemoine F, Noll C, Noomen R, Otten M, Ries J, Rothacher M, Soudarin L, Tavernier G, Valette J (2010) The International DORIS Service (IDS): Toward maturity. In DORIS Special Issue: Scientific Applications in Geodesy and Geodynamics. Adv Space Res 45(12):1408–1420. doi:10.1016/j.asr.2009.11.018CrossRefGoogle Scholar
  46. Willis P, Gobinddass M, Garayt B, Fagard H (2012) Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, Springer, vol 136, pp 43–49. doi:10.1007/978-3-642-20338-1_6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Manuela Seitz
    • 1
    Email author
  • Detlef Angermann
    • 1
  • Michael Gerstl
    • 1
  • Mathis Bloßfeld
    • 1
  • Laura Sánchez
    • 1
  • Florian Seitz
    • 1
  1. 1.Deutsches Geodätisches ForschungsinstitutMunichGermany

Personalised recommendations