Advertisement

Augmented Reality and 3D Technologies: Mapping Case Studies in Education

  • Teresa CardosoEmail author
  • Teresa Coimbra
  • Artur Mateus
Living reference work entry

Latest version View entry history

Abstract

Learning anywhere, any time is becoming ever more a daily routine, due to the increasingly and recent growth of information and communication technologies (ICT). The key characteristic of ICT, namely, in the use of mobile equipment and software, has been their portability, mobility, and network access. The technological development, including software applications available for the implementation of three-dimensional contents, has been following this trend. Hence, it is important to know whether and how these three-dimensional contents are being integrated in educational situations, namely, regarding augmented reality and mobile learning. Thus, a synthesis of Portuguese and international research works and case studies related to the use of three-dimensional augmented reality is presented, from a chronological perspective on the evolution of the information and communication technologies. The main goal of this knowledge mapping is to contribute to the state of the art in three-dimensional augmented reality technologies in education. In addition, it is aimed to frame the creation and implementation of three-dimensional content in higher education, specifically in the field of mathematics.

Keywords

Augmented reality Mobile learning Three-dimensional contents Information and communication technologies Knowledge mapping 

References

  1. Almenara, J. 2017. Presentación: Aplicaciones de la Realidad Aumentada en educación. EDMETIC – Revista de Educación Mediática y TIC 6 (1): 4–8. E-ISSN: 2254-0059.Google Scholar
  2. Almenara, J., and V. Marin. 2017. Dispositivos móviles y realidad aumentada en el aprendizaje del alumnado universitário Mobile devices and augmented reality. Revista Iberoamericana de Educación a Distancia 20 (2): 167–185.  https://doi.org/10.5944/ried.20.2.17245. ISSN: 1138-2783 – E-ISSN: 1390-3306.CrossRefGoogle Scholar
  3. Azuma, R. 1997. A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6 (4): 355–385.CrossRefGoogle Scholar
  4. Bacca, J., S. Baldiris, R. Fabregat, S. Graf, and Kinshuk. 2014. Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society 17 (4): 133–149.Google Scholar
  5. Billinghurst, M. 2011. The future of augmented reality in our everyday life. In Proceedings of the 19th international display workshops, Nagoya.Google Scholar
  6. Billinghurst, M., H. Katob, and I. Poupyrev. 2001. CyberMath – The Magic Book: A transitional AR interface. Computers & Graphics 25: 745–753.CrossRefGoogle Scholar
  7. Bujak, K.R., I. Radu, R. Catrambone, B. MacIntyre, R. Zheng, and G. Golubski. 2013. A psychological perspective on augmented reality in the mathematics classroom. Computers & Education 68: 536–544.  https://doi.org/10.1016/j.compedu.2013.02.017.CrossRefGoogle Scholar
  8. Cardoso, Teresa, Jacinto Antunes Celorico, and Isabel Alarcão. 2007. MAECC® – Discovering a new model to analyse and explore scientific knowledge. In Proceedings of the International Council for Educational Media/Innovative Learning Environments – ICEM/ILE – 2007 conference, educational media and innovative practices: Challenges and visions. https://www.ua.pt/cidtff%5Clale/ReadObject.aspx?obj=12623
  9. Cardoso, Teresa, Isabel Alarcão, and Jacinto Antunes Celorico. 2010. Revisão da Literatura e Sistematização do Conhecimento. Porto: Porto Editora.Google Scholar
  10. Cardoso, Teresa, Isabel Alarcão, and Jacinto Antunes Celorico. 2013. MAECC®: um caminho para mapear investigação. IndagatioDidactica, 5(2) Tecnologias da Informação em Educação. http://revistas.ua.pt/index.php/ID/article/view/2452/2323. Accessed 29 Dec 2013.
  11. Carmigniani, J., B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic. 2011. Augmented reality technologies systems and applications. Multimedia Tools and Applications 51 (1): 341–377.CrossRefGoogle Scholar
  12. Coimbra, T. 2017. As tecnologias tridimensionais como contributo para a aprendizagem da matemática no ensino superior. PhD thesis, Universidade Aberta, Lisboa. http://repositorioaberto.uab.pt/browse?type=advisor&order=ASC&rpp=20&value=Cardoso%2C+Teresa
  13. Coimbra, T., T. Cardoso, and A. Mateus. 2015. Augmented reality: An enhancer for higher education students in math’s learning? Procedia Computer Science 67: 332–339.  https://doi.org/10.1016/j.procs.2015.09.277.CrossRefGoogle Scholar
  14. Di Serio, Á., et al. 2013. Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education 68: 586–596.CrossRefGoogle Scholar
  15. Domingos, A. 2003. Compreensão de conceitos matemáticos avançados – A matemática no início do Superior. PhD thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa.Google Scholar
  16. Erdem, A. 2017. Educational importance of augmented reality application. Educational Research and Practice. ISBN 978-954-07-4271-7.Google Scholar
  17. Feiner, S. 1991. An Architecture for Knowledge-Based Graphical Interfaces. In Sullivan, J., and Tyler, S. (eds.), Intelligent User Interfaces, 259–279. Reading, MA: Addison-Wesley.Google Scholar
  18. Feiner, Steven, B. Macintyre, and D. Selgman. 1993. Knowledge-based augmented reality. Communications of ACM 36 (7): 53–62.CrossRefGoogle Scholar
  19. Fonseca, D., et al. 2014. Relationship between student profile, tool use, participation, and academic performance with the use of augmented reality technology for visualized architecture models. Computers in Human Behavior 31: 434–445.CrossRefGoogle Scholar
  20. Gomes, C., M. Figueiredo, J. Almeida, and J. Gomes. 2016. Realidade Aumentada e Gamificação: Desenvolvimento de aumentações num manual escolar de Educação Musical. In Proceedings of the 3rd Meeting on Games and Mobile Learning – Atas do 3° Encontro sobre Jogos e Mobile Learning.Google Scholar
  21. Hung, H., et al. 2017. Modelos de Realidad Aumentada aplicados a la enseñanza de la Química en el nível universitario Augmented Reality. Revista Cubana de Química 29 (1). E-ISSN 2224-5421.Google Scholar
  22. Inkpen, K. 1997. Adapting the human-computer interface to support collaborative learning environments for children. PhD thesis, University of British Columbia, Department of Computer Science.Google Scholar
  23. Ismail, I., R. Idrus, and T. Gunasegaran. 2010. Motivation, psychology and language effect on mobile learning in Universiti Sains Malaysia. International Journal of Interactive Mobile Technologies 4 (4): 31–36.  https://doi.org/10.3991/ijim.v4i4.1408.CrossRefGoogle Scholar
  24. Jorge, N. 2016. Realidade Aumentada num simulador virtual de tomada de decisão clinica. PhD thesis, Universidade Aberta, Lisboa.Google Scholar
  25. Kamarainen, A., et al. 2013. EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education 68: 545–556.CrossRefGoogle Scholar
  26. Kancherla A., J. Rolland, D. Wright, and G. Burdea. 1995. A novel virtual reality tool for teaching dynamic 3D anatomy. In Proceedings of CVR med, Vol. 95, 163–169. http://link.springer.com/chapter/10.1007/978-3-540-49197-2_18
  27. Kaufmann, H., and D. Schmalstieg. 2003. Mathematics and geometry education with collaborative augmented reality. Computers & Graphics 27: 339–345.CrossRefGoogle Scholar
  28. Liarokapis, F., N. Mourkoussis, M. White, J. Darcy, M. Sifniotis, P. Petridis, A. Basu, and P. Lister. 2004. Web3D and augmented reality to support engineering education. World Transactions on Engineering and Technology Education 3 (1): 11–14.Google Scholar
  29. Lu, S.C.-Y., M. Shpitalni, and R. Gadh. 1999. Virtual and augmented reality technologies for product realization. Annals of the CIRP 48: 471–495.CrossRefGoogle Scholar
  30. Maia-Lima, C., A. Silva, and P. Duarte. 2015. O Ensino da Geometria, os Telemóveis e os QR Codes. In Atas do XVII Simpósio Internacional de Informática Educativa (Proceedings).Google Scholar
  31. Maier, P., G. Klinker, and M. Tonnis. 2009. Augmented reality for teaching spatial relations. In Proceedings from the conference of the International Journal of Arts & Sciences, Toronto, 25–28 May 2009.Google Scholar
  32. Martinez, N. 2017. Augmented reality: Opportunity for developing spatial visualization and learning calculus. Mexico: Tecnológico de Monterrey.  https://doi.org/10.4018/978-1-5225-2110-5.ch003.CrossRefGoogle Scholar
  33. Martin-Gutierrez, J., et al. 2012. Improving strategy of self-learning in engineering: Laboratories with augmented reality. Procedia – Social and Behavioral Sciences 5: 832–839.CrossRefGoogle Scholar
  34. Milgram, P. 2006. Some human factors considerations for designing mixed reality interfaces. Virtual media for military applications. In Meeting proceedings RTO-MP-HFM-136, Keynote 1, Neuilly-sur-Seine. http://www.rto.nato.int/abstracts.asp. Accessed 29 Dec 2013.
  35. Milgram, P., H. Takemura, A. Utsumi, and F. Kishino. 1994. Augmented reality: A class of displays on the reality-virtuality continuum. SPIE, Telemanipulator and Telepresence Technologies 2351: 282–292.CrossRefGoogle Scholar
  36. Nagler, E. 1994. Two-dimensional reality courtesy of camera and computer: No headset, no mouse, no keyboard even – Videoplace does it all. ProQuest Historical Newspapers. New York Times (1857-Current File). Document ID: 116374743.Google Scholar
  37. Nee, A., et al. 2012. Augmented reality applications in design and manufacturing. CIRP Annals – Manufacturing Technology 61: 657–679.CrossRefGoogle Scholar
  38. New Media Consortium. 2005. The horizon report. National learning infrastructure initiative. Stanford: McGraw Hill.Google Scholar
  39. Occipital HQ. 2013. Park Bench Tennis [video file]. https://youtu.be/39v5OoBJFDk. Accessed 30 Oct 2018.
  40. Oliveira, D. 2016. A utilização da Realidade Aumentada como estratégia de suporte ao ensino da informática. In Proceedings of the 3rd Meeting on Games and Mobile Learning – Atas do 3° Encontro sobre Jogos e Mobile Learning.Google Scholar
  41. Quirós, M., I. Carda, and E. Camahort. 2008. Collaborative augmented reality for inorganic chemistry education. In: Proceedings of the 5th WSEAS/IASME international conference on Engineering Education (EE’08), 271–277, Heraklion.Google Scholar
  42. Salinas, P., and E. González-Mendívil. 2017. Augmented reality and solids of revolution. International Journal for Interactive Design and Manufacturing.  https://doi.org/10.1007/s12008-017-0390-3.CrossRefGoogle Scholar
  43. Salinas, P., E. González-Mendívil, E. Quintero, H. Ríos, H. Ramírez, and S. Morales. 2013. The development of a didactic prototype for the learning of mathematics through augmented reality. International Conference on Virtual and Augmented Reality in Education. Procedia Computer Science 25: 62–70.Google Scholar
  44. Schmalstieg, D., T. Langlotz, and M. Billinghurst. 2011. Augmented reality 2.0. Vienna: Springer.CrossRefGoogle Scholar
  45. Structure sensor. http://structure.io. Accessed 30 Oct 2018.
  46. Sturman, D.J., and D. Zeltzer. 1994. A survey of glove-based input. IEEE Computer Graphics and Applications 14 (1): 30–39.CrossRefGoogle Scholar
  47. Sutherland, Ivan E. 1968. A head-mounted three dimensional display. In Proceedings of the AFIPS’68, fall joint computer conference, part I, 757–764.  https://doi.org/10.1145/1476589.1476686. http://dl.acm.org/citation.cfm?id=1476686
  48. Thomas, Bruce, B. Close, J. Donoghue, J. Squires, P.D. Bondi, and W. Piekarski. 2002. First person indoor/outdoor augmented reality application: ARQuake. Personal and Ubiquitous Computing 6 (1): 75–86.CrossRefGoogle Scholar
  49. Vaughan-Nichols, S.J. 2009. Augmented reality: No longer a novelty? Computer 42 (12): 19–22.CrossRefGoogle Scholar
  50. Weidenbach, M., C. Wick, S. Pieper, K.J. Quast, T. Fox, G. Grunst, and D.A. Redel. 2000. Reality simulator for training in two-dimensional echocardiography. Computers and Biomedical Research 33: 11–22.CrossRefGoogle Scholar
  51. Wojciechowski, R., and W. Cellary. 2013. Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education 68: 570–585. http://doi.org/10.1016/j.compedu.2013.02.014.CrossRefGoogle Scholar
  52. Wu, H., et al. 2013. Current status, opportunities and challenges of augmented reality in education. Computers & Education 62: 41–49.CrossRefGoogle Scholar
  53. Zhao, Q. 2009. A survey on virtual reality. Science in China Series F: Information Sciences 52 (3): 348–400.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LE@D, Elearning and Distance Education Lab, Department of Education and Distance Learning and Teaching, UID4372-FCT-MCTESUniversidade Aberta (Open University of Portugal)LisbonPortugal
  2. 2.LE@D, Elearning and Distance Education Lab, UID4372-FCT-MCTESUniversidade Aberta (Open University of Portugal)LisbonPortugal
  3. 3.CDRsp – Centre for Rapid and Sustainable Product DevelopmentPolytechnic Institute of LeiriaMarinha GrandePortugal

Section editors and affiliations

  • Yanguo Jing
    • 1
  1. 1.Coventry UniversityCoventryUK

Personalised recommendations