Advertisement

Relativistic Theory of Nuclear Spin-Rotation Tensor

  • Yunlong Xiao
  • Wenjian  Liu
  • Kenneth Ruud
Living reference work entry

Abstract

The relativistic theory for the nuclear spin-rotation (NSR) tensor is formulated based on the body-fixed molecular Hamiltonian that treats quantum electrons fully relativistically and quantum nuclei quasi-relativistically. The resulting expression for the NSR tensor is then compared with that for the nuclear magnetic shielding tensor, so as to establish a relativistic mapping between them. This relativistic mapping is very robust and permits an easy and direct translation of experimental NSR tensors into semi-experimental absolute nuclear shielding tensors which are otherwise difficult to obtain experimentally. In contrast, the well-known nonrelativistic mapping (Ramsey–Flygare relation) between the nuclear shielding and NSR tensors breaks down even for relatively light elements. Some classic systems are taken as examples to elucidate the concepts.

Keywords

Relativistic molecular Hamiltonian Nuclear spin-rotation Nuclear magnetic resonance Relativistic mapping Rotational London orbitals 

Notes

Acknowledgements

The research of this work was supported by grants from the NSFC (Project Nos. 21033001, 21273011, 21473002, 21173006, and 21290192). KR acknowledges support from the Research Council of Norway through a Centre of Excellence Grant (Grant No. 179568) and helpful discussions with S. Komorovský.

References

  1. 1.
    Flygare WH (1964) Spin-rotation interaction and magnetic shielding in molecules. J Chem Phys 41:793CrossRefGoogle Scholar
  2. 2.
    Flygare WH, Goodisman J (1968) Calculation of diamagnetic shielding in molecules. J Chem Phys 49:3122CrossRefGoogle Scholar
  3. 3.
    Flygare WH (1974) Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters. Chem Rev 74:653CrossRefGoogle Scholar
  4. 4.
    Puzzarini C, Stanton JF, Gauss J (2010) Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy. Int Rev Phys Chem 29:273CrossRefGoogle Scholar
  5. 5.
    Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K (2012) Recent advances in wave function-based methods of molecular-property calculations. Chem Rev 112:543CrossRefGoogle Scholar
  6. 6.
    Teale AM, Lutnæs OB, Helgaker T, Tozer DJ, Gauss J (2013) Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations. J Chem Phys 138:024111CrossRefGoogle Scholar
  7. 7.
    Abragam A (1961) The principles of nuclear magnetic resonance. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Helgaker T, Jaszuński M, Ruud K (1999) Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants. Chem Rev 99:293CrossRefGoogle Scholar
  9. 9.
    Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699CrossRefGoogle Scholar
  10. 10.
    Sundholm D, Gauss J, Schäfer A (1996) Rovibrationally averaged nuclear magnetic shielding tensors calculated at the coupled-cluster level. J Chem Phys 105:11051CrossRefGoogle Scholar
  11. 11.
    Helgaker T, Gauss J, Cazzoli G, Puzzarini C (2013)33S hyperfine interactions in H2S and SO2 and revision of the sulfur nuclear magnetic shielding scale. J Chem Phys 139:244308Google Scholar
  12. 12.
    Komorovsky S, Repisky M, Malkin E, Ruud K, Gauss J (2015) Communication: the absolute shielding scales of oxygen and sulfur revisited. J Chem Phys 142:091102CrossRefGoogle Scholar
  13. 13.
    Antušek A, Jackowski K, Jaszuński M, Makulski W, Wilczek M (2005) Nuclear magnetic dipole moments from NMR spectra. Chem Phys Lett 411:111CrossRefGoogle Scholar
  14. 14.
    Jaszuński M, Antušek A, Garbacz P, Jackowski K, Makulski W, Wilczek M (2012) The determination of accurate nuclear magnetic dipole moments and direct measurement of NMR shielding constants. Prog Nucl Magn Reson 67:49CrossRefGoogle Scholar
  15. 15.
    Puzzarini C, Cazzoli G, Harding ME, Vázquez J, Gauss J (2015) The hyperfine structure in the rotational spectra of D2 17O and HD17O: confirmation of the absolute nuclear magnetic shielding scale for oxygen. J Chem Phys 142:124308CrossRefGoogle Scholar
  16. 16.
    Visscher L, Enevoldsen T, Saue T, Jensen HJA, Oddershede J (1999) Full four-component relativistic calculations of NMR shielding and indirect spin-spin coupling tensors in hydrogen halides. J Comput Chem 20:1262CrossRefGoogle Scholar
  17. 17.
    Saue T (2005) Spin-interactions and the non-relativistic limit of electrodynamics. Adv Quantum Chem 48:383CrossRefGoogle Scholar
  18. 18.
    Aucar IA, Gómez SS, Ruiz de Azúa MC, Giribet CG (2012) Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. J Chem Phys 136:204119CrossRefGoogle Scholar
  19. 19.
    Aucar IA, Gómez SS, Melo JI, Giribet CC, Ruiz de Azúa MC (2013) Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X=H,F,Cl,Br,I) compounds. J Chem Phys 138:134107Google Scholar
  20. 20.
    Xiao Y, Liu W (2013) Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor. J Chem Phys 138:134104CrossRefGoogle Scholar
  21. 21.
    Xiao Y, Liu W (2013) Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: linear molecules. J Chem Phys 139:034113CrossRefGoogle Scholar
  22. 22.
    Malkin E, Komorovsky S, Repisky M, Demissie TB, Ruud K (2013) The absolute shielding constants of heavy nuclei: resolving the enigma of the119Sn absolute shielding. J Phys Chem Lett 4:459CrossRefGoogle Scholar
  23. 23.
    Xiao Y, Zhang Y, Liu W (2014) New experimental NMR shielding scales mapped relativistically from NSR: theory and application. J Chem Theory Comput 10:600CrossRefGoogle Scholar
  24. 24.
    Xiao Y, Zhang Y, Liu W (2014) Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals. J Chem Phys 141:164110CrossRefGoogle Scholar
  25. 25.
    Gauss J, Ruud K, Helgaker T (1996) Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys 105:2804CrossRefGoogle Scholar
  26. 26.
    Aucar IA, Gómez SS, Giribet CG, Ruiz de Azúa MC (2013) Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor. J Chem Phys 139:094112CrossRefGoogle Scholar
  27. 27.
    Åstrand PO, Ruud K, Taylor PR (2000) Calculation of the vibrational wave function of polyatomic molecules. J Chem Phys 112:2655CrossRefGoogle Scholar
  28. 28.
    London F (1937) The quantic theory of inter-atomic currents in aromatic combinations. J Phys Radium 8:397CrossRefGoogle Scholar
  29. 29.
    Ditchfield R (1972) Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys 56:5688CrossRefGoogle Scholar
  30. 30.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251CrossRefGoogle Scholar
  31. 31.
    Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJA (1993) Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism. J Chem Phys 98:8873CrossRefGoogle Scholar
  32. 32.
    Cheng L, Xiao Y, Liu W (2009) Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals. J Chem Phys 131:244113CrossRefGoogle Scholar
  33. 33.
    Xiao Y, Sun Q, Liu W (2012) Fully relativistic theories and methods for NMR parameters. Theor Chem Acc 131:1080CrossRefGoogle Scholar
  34. 34.
    Xiao Y, Peng D, Liu W (2007) Four-component relativistic theory for nuclear magnetic shielding constants: the orbital decomposition approach. J Chem Phys 126:081101CrossRefGoogle Scholar
  35. 35.
    Sun Q, Liu W, Kutzelnigg W (2011) Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 129:423CrossRefGoogle Scholar
  36. 36.
    Stanton RE, Havriliak S (1984) Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 81:1910CrossRefGoogle Scholar
  37. 37.
    Xiao Y, Liu W, Cheng L, Peng D (2007) Four-component relativistic theory for nuclear magnetic shielding constants: critical assessments of different approaches. J Chem Phys 126:214101CrossRefGoogle Scholar
  38. 38.
    Cheng L, Xiao Y, Liu W (2009) Four-component relativistic theory for NMR parameters: unified formulation and numerical assessment of different approaches. J Chem Phys 130:144102CrossRefGoogle Scholar
  39. 39.
    Komorovsky S, Repisky M, Malkin E, Demissie TB, Ruud K (2015) Four-component relativistic density-functional theory calculations of nuclear spin-rotation constants: relativistic effects in p-block hydrides. J Chem Theory Comput Accpte 11:3729CrossRefGoogle Scholar
  40. 40.
    Pyykkö P, Görling A, Rösch N (1987) A transparent interpretation of the relativistic contribution to the NMR Heavy-atom chemical-shift. Mol Phys 61:195CrossRefGoogle Scholar
  41. 41.
    Manninen P, Lantto P, Vaara J, Ruud K (2003) Perturbational ab initio calculations of relativistic contributions to nuclear magnetic resonance shielding tensors. J Chem Phys 119:2623CrossRefGoogle Scholar
  42. 42.
    Manninen P, Ruud K, Lantto P, Vaara J (2005) Leading-order relativistic effects on nuclear magnetic resonance shielding tensors. J Chem Phys 122:114107; Erratum ibid. 124:149901 (2006)Google Scholar
  43. 43.
    Komorovsky S, Repisky M, Demissie TB, Malkin E, Ruud K, Nuclear spin-rotation and shielding constants in the SnX (S = O, S, Se, Te) series. UnpublishedGoogle Scholar
  44. 44.
    Bass SM, Deleon RL, Muenter JS (1987) Stark, Zeeman, and hyperfine properties of v=0, v=1, and the equilibrium configuration of hydrogen fluoride. J Chem Phys 86:4305CrossRefGoogle Scholar
  45. 45.
    Cazzoli G, Puzzarini C (2004) Hyperfine structure of the J=\(1 \leftarrow 0\) transition of H35Cl and H37Cl: improved ground state parameters. J Mol Spectrosc 226:161CrossRefGoogle Scholar
  46. 46.
    Van Dijk FA, Dymanus A (1969) Hyperfine structure of the rotational spectrum of HBr and in the submillimeter wave region. Chem Phys Lett 4:170CrossRefGoogle Scholar
  47. 47.
    Van Dijk FA, Dymanus A (1968) Hyperfine structure of the rotational spectrum of HI in the submillimeter region. Chem Phys Lett 2:235CrossRefGoogle Scholar
  48. 48.
    Jaszuński M, Ruud K (2006) Nuclear magnetic resonance shielding constants in XH4 group XIV hydrides. Mol Phys 104:2139CrossRefGoogle Scholar
  49. 49.
    Jaszuński M, Demissie TB, Ruud K (2014) Spin-rotation and NMR shielding constants in XF molecules (X = B, Al, Ga, In, and Tl). J Phys Chem A 118:9588CrossRefGoogle Scholar
  50. 50.
    Ruud K, Demissie TB, Jasuński M (2014) Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF6 molecules, X = S, Se, Te, Mo, and W. J Chem Phys 140:194308CrossRefGoogle Scholar
  51. 51.
    Demissie TB, Jaszuński M, Malkin E, Komorovsky S, Ruud K (2015) NMR shielding and spin-rotation constants in XCO (X = Ni, Pd, Pt) molecules. Mol Phys 113:1576CrossRefGoogle Scholar
  52. 52.
    Jaszuński M, Repisky M, Demissie TB, Komorovsky S, Malkin E, Ruud K, Garbacz P, Jackowski K, Makulski W (2013) Spin-rotation and NMR shielding constants in HCl. J Chem Phys 139:234302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and EngineeringPeking UniversityHaidian,BeijingChina
  2. 2.Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and EngineeringPeking UniversityHaidian,BeijingChina
  3. 3.Department of Chemistry, Centre for Theoretical and Computational ChemistryUniversity of Tromsø—The Arctic University of NorwayTromsøNorway

Personalised recommendations