Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H. Ang, Oussama Khatib, Bruno Siciliano

Asymptotically Optimal Sampling-Based Planners

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_172-1
  • 23 Downloads

Synonyms

Definition

An asymptotically optimal sampling-based planner employs sampling to solve robot motion planning problems and returns paths with a cost that converges to the optimal solution cost, as the number of samples approaches infinity.

Overview

Sampling-based planners sample feasible robot configurations and connect them with valid paths. They are widely popular due to their simplicity, generality, and elegance in terms of analysis. They scale well to high-dimensional problems and rely only on well-understood primitives, such as collision checking and nearest-neighbor data structures. Roadmap planners, e.g., the probabilistic roadmap method (PRM) (Kavraki et al., 1996), construct a graph, where nodes are configurations and edges are local paths. The roadmap can be preprocessed and used to answer multiple queries. Alternatives, e.g., the rapidly exploring random tree (RRT) (LaValle and Kuffner Jr, 2001), build a tree and aim to quickly...

This is a preview of subscription content, log in to check access.

References

  1. Agha-mohammadi A, Chakravorty S, Amato NM (2012) On the probabilistic completeness of the sampling-based feedback motion planners in belief space. In: IEEE ICRACrossRefGoogle Scholar
  2. Amato NM, Bayazit OB, Dale LK, Jones C, Vallejo D (1998) OBPRM: An obstacle-based PRM for 3d workspaces. In: WAFRzbMATHGoogle Scholar
  3. Arslan O, Tsiotras P (2013) Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: IEEE ICRACrossRefGoogle Scholar
  4. Baykal C, Bowen C, Alterovitz R (2019) Asymptotically optimal kinematic design of robots using motion planning. Auton Robot 43(2):345–357CrossRefGoogle Scholar
  5. Bekris K, Shome R, Krontiris A, Dobson A (2015) Cloud automation: precomputing roadmaps for flexible manipulation. IEEE RAM 22(2):41–50Google Scholar
  6. Bialkowski J, Karaman S, Frazzoli E (2011) Massively parallelizing the RRT and the RRT*. In: IEEE/RSJ IROSCrossRefGoogle Scholar
  7. Bialkowski J, Karaman S, Otte M, Frazzoli E (2013) Efficient collision checking in sampling-based motion planning. In: Algorithmic foundations of robotics X. Springer, pp 365–380Google Scholar
  8. Bowen C, Alterovitz R (2016) Asymptotically optimal motion planning for tasks using learned virtual landmarks. IEEE RA-L 1(2):1036–1043Google Scholar
  9. Chaudhari P, Karaman S, Hsu D, Frazzoli E (2013) Sampling-based algorithms for continuous-time pomdps. In: 2013 American control conference, pp 4604–4610Google Scholar
  10. Choudhury S, Gammell JD, Barfoot TD, Srinivasa SS, Scherer S (2016) Regionally accelerated batch informed trees (RABIT*): a framework to integrate local information into optimal path planning. In: IEEE ICRA, pp 4207–4214Google Scholar
  11. Dobson A, Bekris KE (2013) A study on the finite-time near-optimality properties of sampling-based motion planners. In: IEEE/RSJ IROS, pp 1236–1241Google Scholar
  12. Dobson A, Bekris KE (2014) Sparse roadmap spanners for asymptotically near-optimal motion planning. IJRR 33(1):18–47Google Scholar
  13. Faust A, Oslund K, Ramirez O, Francis A, Tapia L, Fiser M, Davidson J (2018) PRM-RL: Long-range robotic navigation tasks by combining RL and sampling-based planning. In: IEEE ICRA, pp 5113–5120Google Scholar
  14. Gammell JD, Srinivasa SS, Barfoot TD (2015) Batch informed trees: sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In: IEEE ICRAGoogle Scholar
  15. Haghtalab N, Mackenzie S, Procaccia AD, Salzman O, Srinivasa SS (2018) The provable virtue of laziness in motion planning. In: 28th ICAPSGoogle Scholar
  16. Hauser K, Zhou Y (2016) Asymptotically optimal planning by feasible kinodynamic planning in a state–cost space. IEEE T-RO 32(6):1431–1443CrossRefGoogle Scholar
  17. Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J Comput Geom Appl 9(04n05):495–512Google Scholar
  18. Ichnowski J, Alterovitz R (2016) Cloud based motion plan computation for power constrained robots. In: WAFRGoogle Scholar
  19. Ichter B, Pavone M (2019) Robot motion planning in learned latent spaces. In: IEEE RA-LCrossRefGoogle Scholar
  20. Ichter B, Schmerling E, Pavone M (2017) Group marching tree: sampling-based approximately optimal motion planning on gpus. In: IEEE IRC, pp 219–226Google Scholar
  21. Jaillet L, Porta JM (2013) Asymptotically-optimal path planning on manifolds. R:SSGoogle Scholar
  22. Janson L, Schmerling E, Clark A, Pavone M (2015) Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. IJRR 34(7):883–921Google Scholar
  23. Janson L, Ichter B, Pavone M (2018) Deterministic sampling-based motion planning: optimality, complexity, and performance. IJRR 37(1):46–61Google Scholar
  24. Hwan Jeon J, Cowlagi RV, Peters SC, Karaman S, Frazzoli E, Tsiotras P, Iagnemma K (2013) Optimal motion planning with the half-car dynamical model for autonomous high-speed driving. In: 2013 American control conference, IEEE, pp 188–193Google Scholar
  25. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. IJRR 30(7):846–894zbMATHGoogle Scholar
  26. Kavraki LE, Svestka P, Latombe J, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE TRA 12(4):566–580Google Scholar
  27. Kavraki LE, Latombe JC, Motwani R, Raghavan P (1998) Randomized query processing in robot path planning. J Comput Syst Sci 57(1):50–60MathSciNetzbMATHCrossRefGoogle Scholar
  28. Kim J, Pearce RA, Amato NM (2003) Extracting optimal paths from roadmaps for motion planning. In: IEEE ICRA, vol 2, pp 2424–2429Google Scholar
  29. Kimmel A, Shome R, Littlefield Z, Bekris K (2018) Fast, anytime motion planning for prehensile manipulation in clutter. In: IEEE-RAS Humanoids, pp 1–9Google Scholar
  30. Kingston Z, Moll M, Kavraki LE (2017) Decoupling constraints from sampling-based planners. In: ISRRGoogle Scholar
  31. Kingston Z, Moll M, Kavraki LE (2018) Sampling-based methods for motion planning with constraints. Ann Rev Control Robot Auton Syst 1:159–185CrossRefGoogle Scholar
  32. Kleinbort M, Granados E, Solovey K, Bonalli R, Bekris KE, Halperin D (2020) Refined analysis of asymptotically-optimal kinodynamic planning in the state-cost space. IEEE ICRACrossRefGoogle Scholar
  33. LaValle SM, Kuffner Jr JJ (2001) Randomized kinodynamic planning. IJRR 20(5):378–400Google Scholar
  34. Li Y, Littlefield Z, Bekris KE (2016) Asymptotically optimal sampling-based kinodynamic planning. IJRR 35(5):528–564Google Scholar
  35. Littlefield Z, Bekris KE (2018) Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions. In: IEEE/RSJ IROSCrossRefGoogle Scholar
  36. Littlefield Z, Klimenko D, Kurniawati H, Bekris KE (2015) The importance of a suitable distance function in belief-space planning. In: ISRRGoogle Scholar
  37. Littlefield Z, Surovik D, Vespignani M, Bruce J, Wang W, Bekris KE (2019) Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives. IJRRCrossRefGoogle Scholar
  38. Marble JD, Bekris KE (2013) Asymptotically near-optimal planning with probabilistic roadmap spanners. T-RO 29(2):432–444Google Scholar
  39. Murray S, Floyd-Jones W, Qi Y, Sorin D, Konidaris G (2016) Robot planning on a chip. In: R:SSGoogle Scholar
  40. Otte M, Correll N (2013) C-forest: parallel shortest path planning with superlinear speedup. T-ROGoogle Scholar
  41. Otte M, Frazzoli E (2016) RRTX: asymptotically optimal single-query sampling-based motion planning with quick replanning. IJRR 35(7):797–822Google Scholar
  42. Pan J, Manocha D (2012) Gpu-based parallel collision detection for fast motion planning. IJRRzbMATHCrossRefGoogle Scholar
  43. Patil S, Pan J, Abbeel P, Goldberg K (2015) Planning curvature and torsion constrained ribbons in 3d with application to intracavitary brachytherapy. IEEE T-ASE 12(4):1332–1345Google Scholar
  44. Penrose M (2003) Random geometric graphs. 5, Oxford University PressGoogle Scholar
  45. Perez A, Karaman S, Shkolnik A, Frazzoli E, Teller S, Walter MR (2011) Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms. In: 2011 IEEE/RSJ IROS, pp 4307–4313Google Scholar
  46. Raveh B, Enosh A, Halperin D (2011) A little more, a lot better: Improving path quality by a path-merging algorithm. IEEE T-RO 27(2):365–371CrossRefGoogle Scholar
  47. Salzman O, Halperin D (2016) Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE T-RO 32(3):473–483CrossRefGoogle Scholar
  48. Schmitt PS, Neubauer W, Feiten W, Wurm KM, Wichert GV, Burgard W (2017) Optimal, sampling-based manipulation planning. In: IEEE ICRA, pp 3426–3432Google Scholar
  49. Shome R, Bekris KE (2019) Anytime multi-arm task and motion planning for pick-and-place of individual objects via handoffs. In: IEEE MRSCrossRefGoogle Scholar
  50. Shome R, Solovey K, Dobson A, Halperin D, Bekris KE (2019) dRRT*: scalable and informed asymptotically-optimal multi-robot motion planning. Autonomous Robots, pp 1–25Google Scholar
  51. Shome R, Nakhimovich D, Bekris KE (2020) Pushing the boundaries of asymptotic optimality in integrated task and motion planning. In: WAFRGoogle Scholar
  52. Solovey K, Kleinbort M (2020) The critical radius in sampling-based motion planning. IJRRCrossRefGoogle Scholar
  53. Solovey K, Salzman O, Halperin D (2014) Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. In: WAFRGoogle Scholar
  54. Solovey K, Salzman O, Halperin D (2018) New perspective on sampling-based motion planning via random geometric graphs. IJRR 37(10):1117–1133Google Scholar
  55. Solovey K, Janson L, Schmerling E, Frazzoli E, Pavone M (2020) Revisiting the asymptotic optimality of RRT. In: IEEE ICRACrossRefGoogle Scholar
  56. Tsao M, Solovey K, Pavone M (2020) Sample complexity of probabilistic roadmaps via epsilon-nets. IEEE ICRAGoogle Scholar
  57. Vega-Brown W, Roy N (2016) Asymptotically optimal planning under piecewise-analytic constraints. In: WAFRGoogle Scholar
  58. Webb DJ, Van Den Berg J (2013) Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In: IEEE ICRAGoogle Scholar

Authors and Affiliations

  1. 1.Rutgers UniversityNew BrunswickUSA
  2. 2.Rice UniversityHoustonUSA

Section editors and affiliations

  • Lydia E. Kavraki
    • 1
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA