Advertisement

Genetics and Tropical Forests

  • Bernd Degen
  • Alexandre Magno Sebbenn
Living reference work entry

Abstract

Trees compared to other organisms have a very high level of genetic diversity (Hamrick and Godt 1990). As sessile long-living plants, they need this high level of genetic variation for adaptation to highly variable environmental conditions. A set of population genetic processes such as the mating system, gene flow, selection, and migration determine the genetic composition of a tree population. First we will give an introduction and overview on the most important processes and their impact on the genetic diversity of tropical trees, and then we will go in more details for some of the processes. The genetic diversity is of fundamental function for the stability of forest ecosystems. Thus adequate measures on gene conservation are very important. We will cover this topic with a specific chapter. More recently with the advance of genomics and molecular genetics, we have a broad set of molecular markers in hand for diagnostic purposes. We highlight as one important application the use of gene markers and DNA bar coding for tree species identification and as a tool to fight against illegal logging. Finally we will give an introduction to tree breeding programs and provenance tests in the tropics.

Keywords

Animal Dispersal Forest Fragmentation Genetic Conservation Gene Flow Mating System Pollen Dispersal Seed Dispersal Spatial Genetic Structure Tree Breeding Tropical Trees. 

References

  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188PubMedGoogle Scholar
  2. Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105PubMedGoogle Scholar
  3. Alves RM, Artero AS, Sebbenn AM et al (2003) Mating system in a natural population of Theobroma grandiflorum (Willd ex Spreng) Schum. Genet Mol Biol 26:373–379Google Scholar
  4. Anderson M (1991) Mechanistic models for the seed shadows of wind-dispersed plants. Am Nat 137:476–497Google Scholar
  5. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellite have altered the landscape. Crit Rev Plant Sci 29:148–161Google Scholar
  6. Ashton PS (1976) An approach to the study of breeding systems, population structure and taxonomy of tropical trees. In: Burley J, Styles BT (eds) Tropical trees: variation, breeding and conservation. Academic press, London, pp 35–42Google Scholar
  7. Asuka Y, Tomaru N, Munehara Y et al (2005) Half-sib family structure of Fagus crenata samplings in an old-growth beech-dwarf bamboo forest. Mol Ecol 14:2565–2575PubMedGoogle Scholar
  8. Augspurger CK (1986) Morphology and dispersal potential of wind-dispersed diaspores of Neotropical trees. Am J Bot 73:353–363Google Scholar
  9. Augspurger CK, Franson SE (1987) Wind dispersal of artificial fruits varying in mass, area, and morphology. Ecology 68:27–42Google Scholar
  10. Austerlitz F, Smouse PE (2001) Two-generation analysis of pollen flow across a landscape. II. Relation between ΦFT, pollen dispersal and interfemale distance. Genetics 157:851–857PubMedCentralPubMedGoogle Scholar
  11. Azevedo VCR, Kanashiro M, Ciampi AY et al (2007) Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged Amazonian timber species. J Hered 98:646–654PubMedGoogle Scholar
  12. Bawa KS (1974) Breeding systems of tree species for a lowland tropical community. Evolution 28:85–92Google Scholar
  13. Bawa KS, Opler PA (1975) Dioecism in tropical forest trees. Evolution 29:167–179Google Scholar
  14. Bawa KS, Perry DR, Beach JH (1985) Reproductive biology of tropical lowland rain forest trees. 1. Sexual systems and incompatibility mechanisms. Am J Bot 72:331–345Google Scholar
  15. Bittencourt JM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99:580–591PubMedGoogle Scholar
  16. Bittencourt JM, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TWOGENER analysis. Conserv Genet 9:855–868Google Scholar
  17. Born C, Hardy OJ, Chevallier MH et al (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050PubMedGoogle Scholar
  18. Braga AC, Collevatti RG (2011) Temporal variation in pollen dispersal and breeding structure in a bee-pollinated Neotropical tree. Heredity 106:911–919PubMedCentralPubMedGoogle Scholar
  19. Breed MF, Marklund MHK, Ottewell KM et al (2012) Pollen diversity matters: revealing the neglected effect of pollen diversity on fitness in fragmented landscapes. Mol Ecol 21:5955–5968PubMedGoogle Scholar
  20. Bressan EA, Sebbenn AM, Ferreira RR et al (2013) A Jatropha curcas L. (Euphorbiaceae) exhibits a mixed-mating system, high correlated mating and apomixis. Tree Genet Genomes 9:1089–1097Google Scholar
  21. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757Google Scholar
  22. Brown AHD, Hardner CM (2000) Sample the gene pools of forest trees for ex situ conservation. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice, 1st edn. CABI Publishing, Collingwood, pp 185–196Google Scholar
  23. Burczyk J, Adams WT, Shimizu JY (1996) Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon) stand. Heredity 77:251–260Google Scholar
  24. Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel. For Genet 11:1–14Google Scholar
  25. Campos T, Cunha MO, Sousa ACB et al (2013) Mating system parameters in a high density population of andirobas in the Amazon forest. Pesq Agrop Brasileria 48:504–509Google Scholar
  26. Cannon CH, Morley RJ, Bush ABG (2009) The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Natl Acad Sci U S A 106:11188–11193PubMedCentralPubMedGoogle Scholar
  27. Carneiro F, Sebbenn AM, Kanashiro M et al (2007) Low inter-annual variation of mating system and gene flow of Symphonia globulifera in the Brazilian Amazon. Biotropica 39:628–636Google Scholar
  28. Carneiro F, Degen B, Kanashiro M et al (2009) High levels of pollen dispersal in Symphonia globulifera in a dense Brazilian Amazon forest revealed by paternity analysis. For Ecol Manage 258:1260–1266Google Scholar
  29. Carneiro FS, Lacerda AEB, Lemes MR et al (2011) Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis. For Ecol Manage 262:1758–1765Google Scholar
  30. Caron H, Dumas S, Marque G et al (2000) Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Mol Ecol 9:1089–1098PubMedGoogle Scholar
  31. Cascante A, Quesada M, Lobo JJ et al (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol 16:137–147Google Scholar
  32. Cavers S, Lowe AJ (2002) Regional scale genetic structure within two Central American tree species – the influence of geography, biology and geological history. In: Degen B, Loveless MD, Kremer A (eds) Modelling and experimental research on genetic processes in tropical and temperate forests, 1st edn. EMBRAPA Amazonia Oriental, Belém, pp 179–190Google Scholar
  33. Cavers S, Degen B, Caron H et al (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289PubMedGoogle Scholar
  34. Cloutier D, Hardy OJ, Caron H et al (2007a) Low inbreeding and high pollen dispersal distances in populations of two Amazonian forest tree species. Biotropica 39:406–415Google Scholar
  35. Cloutier D, Kanashiro M, Ciampi AY et al (2007b) Impacts of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Mol Ecol 16:797–809PubMedGoogle Scholar
  36. Colinvaux PA, Oliveira PE, Bush MB (2000) Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169Google Scholar
  37. Collevatti RG, Estolano R, Garcia SF et al (2010) Short-distance pollen dispersal and high self-pollination in a bat-pollinated Neotropical tree. Tree Genet Genomes 6:555–564Google Scholar
  38. Condit R, Ashton PS, Baker P et al (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418PubMedGoogle Scholar
  39. Corner EJH (1954) The evolution of tropical forest. In: Ford EB (ed) Evolution as a process. Allen & Unwin, London, pp 34–46Google Scholar
  40. Cuartas-Hernandez S, Farfan N, Smouse PE (2010) Restricted pollen flow of Dieffenbachia seguine populations in fragmented and continuous tropical forest. Heredity 105:197–204PubMedGoogle Scholar
  41. Degen B, Roubik DW (2004) Effects of animal pollination on pollen dispersal, selfing, and effective population size of tropical trees: a simulation study. Biotropica 36:165–179Google Scholar
  42. Degen B, Petit R, Kremer A (2000) SGS-Spatial Genetic Software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J Hered 92:447–448Google Scholar
  43. Degen B, Caron H, Bandou E et al (2001) Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87:497–507PubMedGoogle Scholar
  44. Degen B, Bandou E, Caron H (2004) Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93:585–591PubMedGoogle Scholar
  45. Degen B, Blanc L, Caron H et al (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401Google Scholar
  46. Degen B, Ward SE, Lemes MR et al (2013) Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Sci Int Genet 7:55–62PubMedGoogle Scholar
  47. Dick C (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond B 268:2391–2397Google Scholar
  48. Dick CW, Etchelecu G, Asterlitz F (2003) Pollen dispersal of Neotropical trees (Dinizia excelsa: Fabaceae) by native insects and Africa honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764PubMedGoogle Scholar
  49. Dick CW, Hardy OJ, Jones FA et al (2008) Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Trop Plant Biol 1:20–33Google Scholar
  50. Doligez A, Joly H (1997) Genetic diversity and spatial genetic structure within a natural stands of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72–81Google Scholar
  51. Dow BD, Ashley MV (1996) High levels of gene flow in Bur Oak revealed by paternity analysis using microsatellites. J Hered 89:62–70Google Scholar
  52. Duminil J, Caron H, Scotti I et al (2006) Blind population genetics survey of tropical rainforest trees. Mol Ecol 15:3505–3513PubMedGoogle Scholar
  53. Duminil J, Kenfack D, Viscosi V et al (2012) Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Mol Phylogenet Evol 62:275–285PubMedGoogle Scholar
  54. Dutech C, Maggia L, Joly HI (2000) Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a Neotropical forest tree. Mol Ecol 9:1427–1432PubMedGoogle Scholar
  55. Dutech C, Seiter J, Petronelli P et al (2002) Evidence of low gene flow in a Neotropical clustered tree species in two rainforest stands of French Guiana. Mol Ecol 11:725–738PubMedGoogle Scholar
  56. Dutech C, Maggia L, Tardy C et al (2003) Tracking a genetic signal of extinction-recolonization events in a Neotropical tree species: Vouacapoua americana Aublet in French Guiana. Evolution 57:2753–2764PubMedGoogle Scholar
  57. Eldridge KG, Davidson J, Hardwood C et al (1993) Eucalypt domestication and breeding. Clarendon, OxfordGoogle Scholar
  58. Estrada A, Coates-Estrada R (1986) Frugivory in howling monkeys (Alouatta palliata) at Los Tuxtlas, Mexico: dispersal and fate of seeds. In: Estrada A, Fleming T (eds) Frugivory and seed dispersal. Dr. W. Junk, Dordrecht, pp 93–104Google Scholar
  59. Federov AA (1966) The structure of the tropical rain forest and speciation in the humid tropics. J Ecol 96:9–20Google Scholar
  60. Feres JM, Guidugli MC, Mestriner MA et al (2009) Microsatellite diversity and effective population size in a germplasm bank of Hymenaea courbaril var. stilbocarpa (Leguminosae), an endangered tropical tree: recommendations for conservation. Genet Resour Crop Evol 56:797–807Google Scholar
  61. Feres JM, Sebbenn AM, Guidugli MC et al (2012) Mating system parameters at hierarchical levels of fruits, individuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conserv Genet 13:393–405Google Scholar
  62. Ferreira DK, Nazareno AG, Mantovani A et al (2012) Genetic analysis of 50-year old Brazilian pine (Araucaria angustifolia) plantations: implications for conservation planning. Conserv Genet 13:435–442Google Scholar
  63. Frankel OH, Soule MS (1981) Conservation and evolution. Cambridge University Press, CambridgeGoogle Scholar
  64. Fuchs EL, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endangered tropical tree, Guaiacum sanctum (Zygophyllacea). Conserv Genet 12:175–185Google Scholar
  65. Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17:149–157Google Scholar
  66. Gaino APSC, Silva AM, Moraes MA et al (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree Myracrodruon urundeuva. Conserv Genet 11:1631–1643Google Scholar
  67. Garber PA (1986) The ecology of seed dispersal in two species of Callitrichid primates (Saguinus mystax and Saguinus fuscicollis). Am J Primatol 10:155–170Google Scholar
  68. Geng Q, Lian C, Goto S et al (2008) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17:4724–4739PubMedGoogle Scholar
  69. Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443PubMedGoogle Scholar
  70. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79Google Scholar
  71. Gregorius HR (1978) The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci 41:217–222Google Scholar
  72. Gregorius HR (1980) The probability of losing an allele when diploid genotypes are sampled. Biometrics 36:643–652PubMedGoogle Scholar
  73. Gribel R, Gibbs PE, Queiroz AL (1999) Flowering phenology and pollination biology of Ceiba pentandra (Bombacaceae) in Central Amazonia. J Trop Ecol 15:247–263Google Scholar
  74. Hamrick JL (1983) The distribution of genetic variation within and among natural plant population. In: Schone-Wald-Cox CM, Chambers SH, MacByte B, Thomas L (eds) Genetics and conservation. Benjamin Cummings Publishing, Menlo Park, pp 335–348Google Scholar
  75. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, Massachusetts, p. 43–63Google Scholar
  76. Hamrick JL, Nason JD (2000) Gene flow in forest trees. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: Principles and practice. CSIRO Publishing, Collingwood, Australia, p. 81–90Google Scholar
  77. Hanson TR, Brunsfeld SJ, Finegan B et al (2008) Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscape. Mol Ecol 17:2060–2073PubMedGoogle Scholar
  78. Harder LD, Barrett SCH (1995) Mating costs of large floral displays in hermaphrodite plants. Nature 373:512–514Google Scholar
  79. Hardesty BD, Dick CW, Kremer A et al (2005) Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama. Heredity 95:290–297PubMedGoogle Scholar
  80. Hardesty BD, Hubbell S, Bermingham E (2006) Genetic evidence of frequent long distance recruitment in a vertebrate-dispersed tree. Ecol Lett 9:516–525PubMedGoogle Scholar
  81. Hardy O, Vekemans X (2002) SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620Google Scholar
  82. Hardy O, González-Martínez SC, Colas B et al (2004) Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). II. Correlated paternity within and among sibships. Genetics 168:1601–1614PubMedCentralPubMedGoogle Scholar
  83. Hardy OJ, Maggia L, Bandou E et al (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571PubMedGoogle Scholar
  84. Hardy OJ, Born C, Budde K et al (2013) Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. Compt Rendus Geosci 345:284–296Google Scholar
  85. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859PubMedGoogle Scholar
  86. Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321Google Scholar
  87. Hirao AS, Kameyama Y, Ohara M et al (2006) Seasonal changes in pollinator activity influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae). Mol Ecol 15:1165–1173PubMedGoogle Scholar
  88. Höltken AM, Schroder H, Wischnewski N et al (2012) Development of DNA-based methods to identify CITES-protected timber species: a case study in the Meliaceae family. Holzforschung 66:97–104Google Scholar
  89. Howe HF (1980) Monkey dispersal and waste of a Neotropical fruit. Ecology 61:944–959Google Scholar
  90. Howe HF (1989) Scatter- and clump-dispersal and seedling demography: hypothesis and implications. Oecologia 79:417–426PubMedGoogle Scholar
  91. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228Google Scholar
  92. Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526PubMedGoogle Scholar
  93. Ismail S, Ghazoul J, Ravikanth G et al (2012) Does long-distance pollen dispersal preclude inbreeding in tropical trees? Fragmentation genetics of Dysoxylum malabaricum in an agro-forest landscape. Mol Ecol 21:5484–5496PubMedGoogle Scholar
  94. Janzen DH, Martin PS (1981) Neotropical anachronisms: the fruits the Gomphotheres ate. Science 215:19–27Google Scholar
  95. Jolivet C, Degen B (2012) Use of DNA fingerprints to control the origin of sapelli timber (Entandrophragma cylindricum) at the forest concession level in Cameroon, Forensic Sci Int Genet 6: 487–493PubMedGoogle Scholar
  96. Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15:3205–3217PubMedGoogle Scholar
  97. Jones FA, Muller-Landau HC (2008) Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J Ecol 96:642–652Google Scholar
  98. Julliot C (1994) Frugivory and seed dispersal by red howler monkeys: evolutionary aspect. Revue D Ecologie – La Terre et La Vie 49:331–341Google Scholar
  99. Kamm U, Rotach P, Gugerli F et al (2009) Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity 103:476–482PubMedGoogle Scholar
  100. Kencier GJ, Kajita T, Pennington RT et al (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209Google Scholar
  101. Kenta T, Isagi Y, Nakagawa M et al (2004) Variation in pollen dispersal between years with different pollination conditions in a tropical emergent tree. Mol Ecol 13:3575–3584PubMedGoogle Scholar
  102. Kimura M, Crow JF (1963) The measurement of effective population number. Evolution 17: 279–288Google Scholar
  103. Klein EK, Desassis N, Oddou-Muratorio S (2008) Pollen flow in the wild service tree, Sorbus torminalis (L.) Crantz. IV. Whole interindividual variance of male fecundity estimated jointly with the dispersal kernel. Mol Ecol 17:3323–3336PubMedGoogle Scholar
  104. Konuma A, Tsumura Y, Lee CT et al (2000) Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Mol Ecol 9:1843–1852PubMedGoogle Scholar
  105. Kress WJ, Wurdack KJ, Zimmer EA et al (2005) Use of barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374PubMedCentralPubMedGoogle Scholar
  106. Krusche D, Geburek T (1991) Conservation of forest gene resources as related to sample size. For Ecol Manage 40:145–150Google Scholar
  107. Lacerda EBL, Kanashiro M, Sebbenn AM (2008) Long-pollen movement and deviation of random mating in a low-density continuous population of Hymenaea courbaril in the Brazilian Amazon. Biotropica 40:462–470Google Scholar
  108. Lander TA, Boshier DH, Harris SA (2010) Fragmented but not isolated: contribution of single trees, small patches and long distance pollen flow to genetic connectivity for Gomortega keule, and endangered tree. Biol Conserv 143:2383–2590Google Scholar
  109. Latouche-Hallé C, Ramboer A, Bandou E et al (2004) Long-distance pollen flow and tolerance to selfing in a Neotropical tree species. Mol Ecol 13:1055–1064PubMedGoogle Scholar
  110. Latouche-Halle’ C, Ramboer A, Bandou E et al (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a Neotropical tree population. Heredity 91:181–190Google Scholar
  111. Leigh EG (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, OxfordGoogle Scholar
  112. Lemes MR, Grattapaglia D, Grogan J et al (2007) Flexible mating system in a logged population of Swietenia macrophylla Kind (Meliaceae): implication for the management of s threatened Neotropical tree species. Plant Ecol 192:169–179Google Scholar
  113. Leonarduzzi C, Leonardi S, Menozzi P et al (2012) Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us? iFor Biogeosci For 5:18–25Google Scholar
  114. Lindgren D, Persson A (1997) Vitalization of results from provenance tests. In: Mátyás C (ed) Perspectives of forest genetics and tree breeding in a changing world, vol 6, IUFRO world series. International Union of Forestry Research Organizations, Vienna, pp 73–85Google Scholar
  115. Loiselle BA, Sork VL, Nason J et al (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425Google Scholar
  116. Lourmas M, Kjellberg F, Dessard H et al (2007) Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 99:151–160PubMedGoogle Scholar
  117. Loveless MD (1992) Isozyme variation in tropical trees: patterns of genetic organization. New For 6:67–94Google Scholar
  118. Loveless MD (2002) Genetic diversity and differentiation in tropical trees. In: Degen B, Loveless MD, Kremer A (eds) Modelling and experimental research on genetic processes in tropical and temperate forests. EMBRAPA Amazonia Oriental, Belém, pp 3–30Google Scholar
  119. Lowe AJ, Cross HB (2011) The application on DNA methods to timber tracking and origin verification. IAWA J 32:251–262Google Scholar
  120. Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95:255–273PubMedGoogle Scholar
  121. Lowe AJ, Wong KN, Tiong YS et al (2010) A DNA method to verify the integrity of timber supply chains; Confirming the legal sourcing of merbau timber from logging concession to sawmill. Silvae Genet 59:263–268Google Scholar
  122. Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Avise JC, Hamick JL (eds) Conservation genetics: case studies from nature. Chapman & Hall, New York, pp 471–501Google Scholar
  123. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766PubMedCentralPubMedGoogle Scholar
  124. Manoel RO, Alves P, Dourado C et al (2012) Contemporary pollen flow, mating patterns and effective population size inferred from paternity analysis in a small fragmented population of the Neotropical tree Copaifera langsdorffii Desf. (Leguminosae-Caesalpinioideae). Conserv Genet 13:613–623Google Scholar
  125. Mantovani A, Morellato LPC, Reis MS (2006) Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered 97:466–472PubMedGoogle Scholar
  126. Martins K, Raposo A, Klimas CA et al (2012) Pollen and seed flow patterns of Carapa guianensis Aublet. (Meliaceae) in two types of Amazonian forest. Genet Mol Biol 35:818–826PubMedCentralPubMedGoogle Scholar
  127. Matlack GR (1987) Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am J Bot 74:1150–1160Google Scholar
  128. Miranda AC, Moraes MLT, Tambarussi EV et al (2013) Heritability for resistance to Puccinia psidii winter rust in Eucalyptus grandis Hill ex Maiden in Southwestern Brazil. Tree Genet Genomes 9:321–329Google Scholar
  129. Moraes MLT, Sebbenn AM (2011) Pollen dispersal between isolated trees in the Brazilian Savannah: a case study of the Neotropical tree Hymenaea stigonocarpa. Biotropica 43:192–199Google Scholar
  130. Mort ME, Archibald JK, Randle CP et al (2007) Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. Am J Bot 94:173–183PubMedGoogle Scholar
  131. Muller-Landau HC, Wright SJ, Calderón O et al (2008) Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 96:653–667Google Scholar
  132. Muona O, Moran GF, Bell JC (1991) Hierarchical patterns of correlated mating in Acacia melanoxylon. Genetics 127:619–626PubMedCentralPubMedGoogle Scholar
  133. Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67:167–174Google Scholar
  134. Naito Y, Kanzaki M, Numata S et al (2008) Size-related flowering and fecundity in the tropical canopy tree species, Shorea acuminata (Dipterocarpaceae) during two consecutive general flowerings. J Plant Res 121:33–42PubMedGoogle Scholar
  135. Nakanishi A, Tomaru N, Yoshimaru H et al (2008) Effects of seeds- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Heredity 102:182–189PubMedGoogle Scholar
  136. Namkoong G (1966) Inbreed effects on estimation of genetic additive variance. For Sci 12:8–13Google Scholar
  137. Namkoong G (1988) Sampling for germplasm collections. Hortscience 23:79–81Google Scholar
  138. Nason JD, Herre EA, Hamrick JL (1996) Paternity analysis of the breeding structure of strangler fig populations: evidence for substantial long-distance wasp dispersal. J Biogeogr 23:501–512Google Scholar
  139. Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687Google Scholar
  140. Nathan R, Casagrandi R (2004) A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J Ecol 92:733–746Google Scholar
  141. Nepstad DC, Verissimo A, Alencar A et al (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508Google Scholar
  142. Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Tree 8:234–239PubMedGoogle Scholar
  143. Obayashi K, Tsumura Y, Ujino TI et al (2002) Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microsatellite DNA analysis. Int J Plant Sci 163:151–158Google Scholar
  144. Oddou-Muratorio S, Klein EK (2008) Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol 17:2743–2754PubMedGoogle Scholar
  145. Patreze CM, Tsai SM (2010) Intrapopulational genetic diversity of Araucaria angustifolia (Bertol.) Kuntze is different when assessed on the basis of chloroplast or nuclear markers. Plant Syst Evol 284:111–122Google Scholar
  146. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295Google Scholar
  147. Pedersen AP, Olesen K, Graudal L (1993) Mejoramento forestal a nivel de espécies y procedências. Danida Forest Seed Center, Humlebaek, pp 57–73. Nota de clase n 3Google Scholar
  148. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214Google Scholar
  149. Petit RJ, Pineau E, Demesure B et al (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A 94:9996–10001PubMedCentralPubMedGoogle Scholar
  150. Queller DC, Gooddnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275Google Scholar
  151. Raspe O, Saumitou Laprade P, Cuguen J et al (2000) Chloroplast DNA haplotype variation and population differentiation in Sorbus aucuparia L. (Rosaceae: Maloideae). Mol Ecol 9:1113–1122PubMedGoogle Scholar
  152. Ribeiro RA, Lovato MB (2004) Mating system in a Neotropical tree species, Senna multijuga (Fabaceae). Genet Mol Biol 27:418–424Google Scholar
  153. Riina J, Thong HL, Leong LS et al (2014) Integrating genetic factors into management of tropical Asian production forests: a review of current knowledge. For Ecol Manage 315:191–201Google Scholar
  154. Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859Google Scholar
  155. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185Google Scholar
  156. Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228PubMedGoogle Scholar
  157. Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequency using independent loci. Heredity 47:35–52Google Scholar
  158. Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22PubMedGoogle Scholar
  159. Roubik DW (2000) Pollination system stability in tropical America. Conserv Biol 14: 1235–1236Google Scholar
  160. Sampson JF (1998) Multiple paternity in Eucalyptus rameliana (Myrytaceae). Heredity 81:349–355Google Scholar
  161. Sant’Anna CS, Sebbenn AM, Klabunde GHF et al (2013) Realized pollen and seed dispersal within a continuous population of the dioecious coniferous Brazilian pine [Araucaria angustifolia (Bertol.) Kuntze]. Conserv Genet 14:601–613Google Scholar
  162. Sebbenn AM (2002) Número de árvores matrizes e conceitos genéticos na coleta de sementes para reflorestamentos com espécies nativas. Rev Inst Flor 14:115–132Google Scholar
  163. Sebbenn AM (2006) Sistema de reprodução em espécies arbóreas tropicais e suas implicações para a seleção de árvores matrizes para reflorestamentos ambientais. In: Higa AR, Silva LD (eds) Pomares de sementes de espécies nativas. FUDEP, Curitiba, pp 193–198Google Scholar
  164. Sebbenn AM, Kageyama PY, Siqueira ACMF et al (2000) Taxa de cruzamento em populações de C. legalis (Mart.) O. Ktze. Sci For 58:25–40Google Scholar
  165. Sebbenn AM, Degen B, Azevedo VCR et al (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manage 254:335–349Google Scholar
  166. Sebbenn AM, Carvalho ACM, Freitas MLM et al (2011) Low level of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145PubMedCentralPubMedGoogle Scholar
  167. Sebbenn AM, Licona JC, Mostacedo B et al (2012) Gene flow in an overexploited population of Swietenia macrophylla King (Meliaceae) in the Bolivian Amazon. Silvae Genet 61:212–220Google Scholar
  168. Shilton LA, Altringham JD, Compton SG et al (1999) Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc Lond 266:219–223Google Scholar
  169. Silva MB, Kanashiro M, Ciampi AY et al (2008) Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. For Ecol Manage 255:1548–1558Google Scholar
  170. Silva CRS, Albuquerque PSB, Ervedosa FR et al (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106:973–985PubMedCentralPubMedGoogle Scholar
  171. Sousa VA, Sebbenn AM, Hattemer H et al (2005) Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. For Genet 12:107–119Google Scholar
  172. Squillace AE (1974) Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet 23:149–156Google Scholar
  173. Stacy EA, Hamrick JL, Nason JD et al (1996) Pollen dispersal in low-density populations of three Neotropical tree species. Am Nat 148:275–298Google Scholar
  174. Stefenon VM, Gailing O, Finkeldey R (2008) The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia. Plant Biol 10:356–364PubMedGoogle Scholar
  175. Syring J, Farrell K, Businsky R et al (2007) Widespread genealogical nonmonophyly in species of Pinus subgenus strobus. Syst Biol 56:163–181PubMedGoogle Scholar
  176. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35: e14Google Scholar
  177. Tamaki I, Setsuko S, Tomaru N (2009) Estimation of outcrossing rates at hierarchical levels of fruits, individuals, populations and species in Magnolia stellata. Heredity 102:381–388PubMedGoogle Scholar
  178. Tarazi R, Sebbenn AM, Kageyama PY et al (2013) Long-distance dispersal in a fire- and livestock-protected savanna. Ecol Evol 3:1003–1015PubMedCentralPubMedGoogle Scholar
  179. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935PubMedGoogle Scholar
  180. Veron V, Caron H, Degen B (2005) Gene flow and mating system of the tropical tree Sextonia rubra. Silvae Genet 54:275–280Google Scholar
  181. Ward M, Dick CW, Gribel R et al (2005) To self, or not to self… A review of outcrossing and pollen mediated gene flow in Neotropical trees. Heredity 95:246–254PubMedGoogle Scholar
  182. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci U S A 99:2038–2042PubMedCentralPubMedGoogle Scholar
  183. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedCentralPubMedGoogle Scholar
  184. Zobel B, Talbert J (1984) Applied forest tree improvement. North Carolina State University, RaleighGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Thünen Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.Instituto Florestal do Governo do Estado de Sao PauloPiracicabaBrazil

Personalised recommendations