Advertisement

Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation

  • Zhaoxia Pu
  • Eugenia Kalnay
Living reference work entry

Abstract

Numerical weather prediction has become the most important tool for weather forecasting around the world. This chapter provides an overview of the fundamental principles of numerical weather prediction, including the numerical framework of models, numerical methods, physical parameterization, and data assimilation. Historical revolution, the recent development, and future direction are introduced and discussed.

Keywords

Numerical weather prediction Numerical methods Physical parameterization Data assimilation 

References

  1. A. Arakawa, C. S. Konor, Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σp vertical co-ordinates. Mon. Wea. Rev. 124, 511–528 (1996)CrossRefGoogle Scholar
  2. A. Arakawa, Adjustment mechanisms in atmospheric motions. J. Meteorol. Soc. Jpn. 75, 155–179 (1997)CrossRefGoogle Scholar
  3. A. Arakawa, The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004)CrossRefGoogle Scholar
  4. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015)CrossRefGoogle Scholar
  5. V. Bjerknes, Das Problem der Wettervorhersage betrachtet vomStandpunkt der Mechanik und Physik. Meteorol. Z. 21, 1–7 (1904)Google Scholar
  6. F. Bouttier, F. Rabier, The operational implementation of 4D-Var. ECMWF Newsl. 78, 2–5 (1997)Google Scholar
  7. G. Brunet et al., Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Am. Meteorol. Soc. 91, 1397–1406 (2010)CrossRefGoogle Scholar
  8. J.G. Charney, R. Fjoertoft, J.V. Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)CrossRefGoogle Scholar
  9. F. Chen, J. Dudhia, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon. Weather Rev. 129, 569–585 (2001)CrossRefGoogle Scholar
  10. P. Courtier, O. Talagrand, Variational assimilation of meteorological observations with the adjoint vorticity equations, Part II, numerical results. Quart. J. Roy. Meteor. Soc. 113, 1329–1347 (1987)CrossRefGoogle Scholar
  11. J. Derber, A variational continuous assimilation technique. Mon. Weather Rev. 117, 2437–2446 (1989)CrossRefGoogle Scholar
  12. R. Daley, Atmospheric Data Analysis (Cambridge University Press, Cambridge, 1991)Google Scholar
  13. D.R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (Springer, New York, 1999)CrossRefGoogle Scholar
  14. M.B. Ek, K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, J.D. Tarpley, Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 22, 8851 (2003)CrossRefGoogle Scholar
  15. G. Evensen, Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)CrossRefGoogle Scholar
  16. T.M. Hamill, C. Snyder, A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev. 128, 2905–2919 (2000)CrossRefGoogle Scholar
  17. M. Hamrud, M. Bonavita, L. Isaksen, EnKF and hybrid gain ensemble data assimilation. Part I: EnKF implementation. Mon. Weather Rev. 143, 4847–4864 (2015)CrossRefGoogle Scholar
  18. S.Y. Hong, Dudhia, Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull. Am. Meteorol. Soc. 93, ES6–ES9 (2012)CrossRefGoogle Scholar
  19. R.M. Hodur, The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon. Weather Rev. 125, 1414–1430 (1997)CrossRefGoogle Scholar
  20. J. Holton, An introduction to dynamic meteorology. Fourth edition. (Elsevier Academic Press, 2004)Google Scholar
  21. P.L. Houtekamer, F. Zhang, Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 144, 4489–4452 (2016)CrossRefGoogle Scholar
  22. R.A. Houze Jr., Cloud Dynamics (Academic, London, 1993)Google Scholar
  23. P.A.E.M. Janssen, The Interaction of Ocean Waves and Wind (Cambridge University Press, Cambridge, UK, 2004)CrossRefGoogle Scholar
  24. H.M. Juang, M. Kanamitsu, The NMC nested regional spectral model. Mon. Weather Rev. 122, 3–26 (1994)CrossRefGoogle Scholar
  25. E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, 2003)Google Scholar
  26. M.F. Khairoutdinov, D.A. Randall, C. DeMott, Simulations of the atmospheric general circulation using a cloud-resolving model as a super- parameterization of physical processes. J. Atmos. Sci. 62, 2136–2154 (2005)CrossRefGoogle Scholar
  27. D.T. Kleist, K. Ide, An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Weather Rev. 143, 452–470 (2015)CrossRefGoogle Scholar
  28. S.-J. Lin, A finite-volume integration method for computing pressure gradient forces in general vertical coordinates. Q. J. R. Meteorol. Soc. 13, 1749–1762 (1997)Google Scholar
  29. S.J. Lin, R.B. Rood, Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Weather Rev. 124, 2046–2070 (1996)CrossRefGoogle Scholar
  30. K.-N. Liou, An Introduction to Atmospheric Radiation (Academic, London, 1980)Google Scholar
  31. A.C. Lorenc, Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112, 1177–1194 (1986)CrossRefGoogle Scholar
  32. P. Lynch, The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431–3444 (2008)CrossRefGoogle Scholar
  33. T. Miyoshi et al., “Big Data Assimilation” revolutionizing severe weather prediction. Bull. Am. Meteorol. Soc. 97, 1347–1354 (2016)CrossRefGoogle Scholar
  34. E. Ott et al., A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415–428 (2004)CrossRefGoogle Scholar
  35. D.F. Parrish, J.C. Derber, The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Weather Rev. 120, 1747–1763 (1992)CrossRefGoogle Scholar
  36. S.G. Penny, The hybrid local ensemble transform Kalman filter. Mon. Weather Rev. 142, 2139–2149 (2014)CrossRefGoogle Scholar
  37. T.N. Palmer, P.D. Williams, Introduction: stochastic physics and climate modelling. Phil. Trans. R. Soc. A 366, 2421–2427 (2008)Google Scholar
  38. R.A. Pielke Sr., Mesoscale meteorological modelling. Second edition (Academic Press, 2002)Google Scholar
  39. L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, UK, 1922)Google Scholar
  40. A.J. Robert, A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteorol. Soc. Jpn. 60, 319–324 (1982)CrossRefGoogle Scholar
  41. A.J. Simmons, A. Hollingsworth, Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 128, 647–677 (2002)CrossRefGoogle Scholar
  42. W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, M. Barker, K.G. Duda, X.Y. Huang, W. Wang, J.G. Powers, A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, 113 pp. (2008)Google Scholar
  43. D.J. Stensrud, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models (Cambridge University Press, Cambridge, UK, 2007)CrossRefGoogle Scholar
  44. G.L. Stephens, The parameterization of radiation for numerical weather prediction and climate models. Mon. Weather Rev. 112, 826–867 (1984)CrossRefGoogle Scholar
  45. J.M. Straka, Cloud and Precipitation Microphysics: Principles and Parameterization (Cambridge University Press, Cambridge, UK, 2009)CrossRefGoogle Scholar
  46. R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, Dordrecht, 1988)CrossRefGoogle Scholar
  47. O. Talagrand, Assimilation of observations, an introduction. J. Met. Soc. Jpn. Spec. Issue 75(1B), 191–209 (1997)CrossRefGoogle Scholar
  48. M. Teixeira, The physics of orographic gravity wave drag. Front. Phys. 2, 43 (2014)CrossRefGoogle Scholar
  49. M. Tiedtke, The general problem of parameterization. ECMWF Lecture Note (1984), http://www.ecmwf.int/en/learning/education-material/introductory-lectures-nwp
  50. M.K. Tippett, J.L. Anderson, C.H. Bishop, T.M. Hamill, J.S. Whitaker, Ensemble square-root filters. Mon. Weather Rev. 131, 1485–1490 (2003)CrossRefGoogle Scholar
  51. H.L. Tolman, User manual and system documentation of WAVEWATCH III version 4.18. NOAA/NWS/NCEP/MMAB Technical Note 316, 194 pp. (2014)Google Scholar
  52. X. Wang, D. Parrish, D. Kleist, J. Whitaker, GSI 3DVarbased ensemble-variational hybrid data assimilation for NCEP global forecast system: single-resolution experiments. Mon. Weather Rev. 141, 4098–4117 (2013)CrossRefGoogle Scholar
  53. T. Warner, Numerical Weather and Climate Prediction (Cambridge Press, Cambridge, UK, 2011)Google Scholar
  54. D.L. Williamson, The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn. B 85, 241–269 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA

Section editors and affiliations

  • Huiling Yuan
    • 1
  • Zoltan Toth
    • 2
  1. 1.School of Atmospheric Sciences, Nanjing UniversityNanjingChina
  2. 2.Global Systems DivisionEarth System Research Laboratory, National Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations