Molecular Evidence on Primate Origins and Evolution

  • Ryan L. RaaumEmail author
Reference work entry


Molecular data have become an important source of evidence on primate evolutionary history, particularly when the fossil evidence is limited or lacking. The most recent molecular phylogenetic studies of primate evolutionary relationships and divergence times are reviewed here, primarily at the family level and above. Paleontological data are not entirely omitted, but the focus here is on the molecular results. The current molecular evidence for the branching pattern among the primates, colugos, and treeshrews is presented, and current studies provide weak support for a sister group relationship between primates and colugos. The haplorhine affinities of the tarsier are documented out of a sense of duty; hopefully, it will be possible to stop pretending this is an open question sometime soon. The relationships among the platyrrhine families are quite convincingly resolved in favor of an atelid and cebid clade, but the relationships among Aotus, the cebines, and the callitrichines in the Cebidae are poorly resolved. It seems that the molecular evidence will eventually support reciprocal monophyly of the living galagos and lorises, but the molecular data are not presently very helpful. Excluding the early diverging Daubentonia lineage, the relationship of the remaining four lemur families almost certainly includes a cheirogaleid-lepilemurid clade but is otherwise poorly resolved by molecular data. Advances in divergence date estimation methodology have begun to rectify some of the absurdly early estimates for the time of origin of the crown primate radiation, but there is still a lot of work to do. Fossil calibration remains problematically applied, and some highly cited studies have poorly justified or unjustifiable calibrations. New methods are being developed for mostly or completely fossil calibration-free divergence date estimation and are very promising.


Divergence Date Sister Taxon Lineage Divergence Incomplete Lineage Sorting Crown Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adkins RM, Honeycutt RL (1993) A molecular examination of Archontan and Chiropteran monophyly. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Advances in primatology. Springer, New York, pp 227–249CrossRefGoogle Scholar
  2. Antoine P-O, Salas-Gismondi R, Baby P, Benammi M, Brusset S, de Franceschi D, Espurt N, Goillot C, Pujos F, Tejada J, Urbina M (2007) The middle Miocene (Laventan) Fitzcarrald fauna, Amazonian Peru. In: Díaz-Martínez E, Rábano I (eds) 4th European meeting on the palaeontology and stratigraphy of latin America, Instituto Geológico y Minero de España, Madrid. Instituto Geológico y Minero de España, Madrid, pp 19–24Google Scholar
  3. Archibald JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mamm Evol 8:107–124CrossRefGoogle Scholar
  4. Arnason U, Gullberg A, Gretarsdottir S, Ursing B, Janke A (2000) The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J Mol Evol 50:569–578PubMedGoogle Scholar
  5. Arnason U, Gullberg A, Burguete AS, Janice A (2001) Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans. Hereditas 133:217–228CrossRefGoogle Scholar
  6. Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M (2008) Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421:37–51PubMedCrossRefGoogle Scholar
  7. Bailey WJ, Fitch DH, Tagle DA, Czelusniak J, Slightom JL, Goodman M (1991) Molecular evolution of the psi eta-globin gene locus: gibbon phylogeny and the hominoid slowdown. Mol Biol Evol 8:155–184PubMedGoogle Scholar
  8. Bailey WJ, Slightom JL, Goodman M (1992) Rejection of the “flying primate” hypothesis by phylogenetic evidence from the epsilon-globin gene. Science 256:86–89PubMedCrossRefGoogle Scholar
  9. Bajpai S, Kay RF, Williams BA, Das DP, Kapur VV, Tiwari BN (2008) The oldest Asian record of Anthropoidea. Proc Natl Acad Sci 105:11093–11098PubMedCentralPubMedCrossRefGoogle Scholar
  10. Barroso CML, Schneider H, Schneider MPC, Sampaio I, Harada ML, Czelusniak J, Goodman M (1997) Update on the phylogenetic systematics of new world monkeys: further DNA evidence for placing the Pygmy marmoset (Cebuella) within the genus Callithrix. Int J Primatol 18:651–674CrossRefGoogle Scholar
  11. Baurain D, Brinkmann H, Philippe H (2007) Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol 24:6–9PubMedCrossRefGoogle Scholar
  12. Beard KC, Qi T, Dawson MR, Wang B, Li C (1994) A diverse new primate fauna from middle Eocene fissure-fillings in Southeastern China. Nature 368:604–609PubMedCrossRefGoogle Scholar
  13. Begun DR, Ward CV, Rose MD (1997) Events in hominoid evolution. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: Miocene hominoid evolution and adaptation. Plenum Press, New York, pp 389–415CrossRefGoogle Scholar
  14. Benefit BR, McCrossin ML (2002) The Victoriapithecidae, Cercopithecoidea. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 241–253Google Scholar
  15. Benefit BR, Pickford M (1986) Miocene fossil Cercopithecoids from Kenya. Am J Phys Anthropol 69:441–464CrossRefGoogle Scholar
  16. Benton MJ, Donoghue P (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53PubMedCrossRefGoogle Scholar
  17. Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibration and constraining molecular clocks. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 35–86Google Scholar
  18. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  19. Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of Plesiadapiforms to crown-clade primates. Proc Natl Acad Sci 104:1159–1164PubMedCentralPubMedCrossRefGoogle Scholar
  20. Borries C, Gordon AD, Koenig A (2013) Beware of primate life history data: a plea for data standards and a repository. PLoS ONE 8:e67200PubMedCentralPubMedCrossRefGoogle Scholar
  21. Boschetto HB, Brown FH, McDougall I (1992) Stratigraphy of the Lothidok range, Northern Kenya, andK/Ar ages of its Miocene primates. J Hum Evol 22:47–71CrossRefGoogle Scholar
  22. Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A, Ahounta D, Beauvilain A, Blondel C, Bocherens H, Boisserie J-R, De Bonis L, Coppens Y, Dejax J, Denys C, Duringer P, Eisenmann V, Fanone G, Fronty P, Geraads D, Lehmann T, Lihoreau F, Louchart A, Mahamat A, Merceron G, Mouchelin G, Otero O, Campomanes PP, Ponce de León M, Rage J-C, Sapanet M, Schuster M, Sudre J, Tassy P, Valentin X, Vignaud P, Viriot L, Zazzo A, Zollikofer C (2002) A new hominid from the upper Miocene of Chad, Central Africa. Nature 418:145–151PubMedCrossRefGoogle Scholar
  23. Burrell AS, Jolly CJ, Tosi AJ, Disotell TR (2009) Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylogenet Evol 51:340–348PubMedCrossRefGoogle Scholar
  24. Calder WAI (1984) Size, function, and life history. Harvard University Press, Cambridge, MAGoogle Scholar
  25. Canavez FC, Moreira MAM, Ladasky JJ, Pissinatti A, Parham P, Seuánez HN (1999) Molecular phylogeny of new world primates (Platyrrhini) based on β2-microglobulin DNA sequences. Mol Phylogenet Evol 12:74–82PubMedCrossRefGoogle Scholar
  26. Casanovas-Vilar I, Alba DM, Garcés M, Robles JM, Moyà-Solà S (2011) Updated chronology for the Miocene hominoid radiation in Western Eurasia. Proc Natl Acad Sci 108:5554–5559PubMedCentralPubMedCrossRefGoogle Scholar
  27. Chaimanee Y, Jolly D, Benammi M, Tafforeau P, Duzer D, Moussa I, Jaeger J-J (2003) A middle Miocene hominoid from Thailand and orangutan origins. Nature 422:61–65PubMedCrossRefGoogle Scholar
  28. Chaimanee Y, Suteethorn V, Jintasakul P, Vidthayanon C, Marandat B, Jaeger J-J (2004) A new orang-utan relative from the Late Miocene of Thailand. Nature 427:439–441PubMedCrossRefGoogle Scholar
  29. Chan Y-C, Roos C, Inoue-Murayama M, Inoue E, Shih C-C, Pei KJ-C, Vigilant L (2010) Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS ONE 5:e14419PubMedCentralPubMedCrossRefGoogle Scholar
  30. Chan Y-C, Roos C, Inoue-Murayama M, Inoue E, Shih C-C, Vigilant L (2012) A comparative analysis of Y chromosome and mtDNA phylogenies of the Hylobates gibbons. BMC Evol Biol 12:150PubMedCentralPubMedCrossRefGoogle Scholar
  31. Chan Y-C, Roos C, Inoue-Murayama M, Inoue E, Shih C-C, Pei KJ-C, Vigilant L (2013) Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data. BMC Evol Biol 13:82PubMedCentralPubMedCrossRefGoogle Scholar
  32. Chatterjee H, Ho S, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9:259PubMedCentralPubMedCrossRefGoogle Scholar
  33. Chaves R, Sampaio I, Schneider MP, Schneider H, Page SL, Goodman M (1999) The place of Callimico goeldii in the callitrichine phylogenetic tree: evidence from von Willebrand factor gene intron II sequences. Mol Phylogenet Evol 13:392–404PubMedCrossRefGoogle Scholar
  34. Churakov G, Kriegs JO, Baertsch R, Zemann A, Brosius J, Schmitz J (2009) Mosaic retroposon insertion patterns in placental mammals. Genome Res 19:868–875PubMedCentralPubMedCrossRefGoogle Scholar
  35. De Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22:34–41PubMedCrossRefGoogle Scholar
  36. Deaner RO, Barton RA, van Schaik CP (2002) Primate brains and life histories: renewing the connection. In: Kappeler PM, Pereira ME (eds) Primate life histories and socioecology. University of Chicago Press, Chicago, pp 233–265Google Scholar
  37. Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340PubMedCrossRefGoogle Scholar
  38. Delson E (1992) Evolution of old world monkeys. In: Jones S, Martin RD, Pilbeam DR (eds) Cambridge encyclopedia of human evolution. Press Syndicate of the University of Cambridge, Cambridge, pp 217–222Google Scholar
  39. Delson E, Rosenberger AL (1984) Are there any Anthropoid primate living fossils? In: Stanley SM, Eldredge N (eds) Living fossils. Casebooks in earth sciences. Springer, New York, pp 50–61Google Scholar
  40. Delson E, Tattersal I, Van Couvering JA, Brooks AS (2000) Cercopithecidae. In: Brooks AS, Van Couvering J, Delson E, Tattersall I (eds) Encyclopedia of human evolution and prehistory, 2nd edn. Garland Press, New York, pp 166–171Google Scholar
  41. Detwiler KM (2004) Hybridization between red-tailed monkeys (Cercopithecus ascanius) and blue monkeys (C. mitis) in East African forests. In: Glenn ME, Cords M (eds) The guenons: diversity and adaptation in African monkeys. Springer, New York, pp 79–97CrossRefGoogle Scholar
  42. Disotell TR (1994) Generic level relationships of the Papionini (Cercopithecoidea). Am J Phys Anthropol 94:47–57PubMedCrossRefGoogle Scholar
  43. Disotell TR, Honeycutt RL, Ruvolo M (1992) Mitochondrial DNA phylogeny of the old-world monkey tribe Papionini. Mol Biol Evol 9:1–13PubMedGoogle Scholar
  44. Dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z (2012) Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc B Biol Sci 279:3491–3500CrossRefGoogle Scholar
  45. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88PubMedCentralPubMedCrossRefGoogle Scholar
  46. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedCentralPubMedCrossRefGoogle Scholar
  47. Easteal S, Herbert G (1997) Molecular evidence from the nuclear genome for the time frame of human evolution. J Mol Evol 44(Suppl 1):S121–S132PubMedCrossRefGoogle Scholar
  48. Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19PubMedCrossRefGoogle Scholar
  49. Fabre P-H, Rodrigues A, Douzery EJP (2009) Patterns of macroevolution among primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53:808–825PubMedCrossRefGoogle Scholar
  50. Fan Y, Huang Z-Y, Cao C-C, Chen C-S, Chen Y-X, Fan D-D, He J, Hou H-L, Hu L, Hu X-T, Jiang X-T, Lai R, Lang Y-S, Liang B, Liao S-G, Mu D, Ma Y-Y, Niu Y-Y, Sun X-Q, Xia J-Q, Xiao J, Xiong Z-Q, Xu L, Yang L, Zhang Y, Zhao W, Zhao X-D, Zheng Y-T, Zhou J-M, Zhu Y-B, Zhang G-J, Wang J, Yao Y-G (2013) Genome of the Chinese tree shrew. Nat Commun 4:1426PubMedCrossRefGoogle Scholar
  51. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Biol 27:401–410CrossRefGoogle Scholar
  52. Finarelli JA, Clyde WC (2004) Reassessing hominoid phylogeny: evaluating congruence in the morphological and temporal data. Paleobiology 30:614–651CrossRefGoogle Scholar
  53. Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C (2013) A mitogenomic phylogeny of living primates. PLoS ONE 8:e69504PubMedCentralPubMedCrossRefGoogle Scholar
  54. Fleagle JG (1999) Primate Adaptation and Evolution, 2nd edn. Academic, New YorkGoogle Scholar
  55. Fleagle JG (2013) Primate adaptation and evolution, 3rd edn. Academic, New YorkGoogle Scholar
  56. Franzen JL, Gingerich PD, Habersetzer J, Hurum JH, von Koenigswald W, Smith BH (2009) Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology. PLoS ONE 4:e5723PubMedCentralPubMedCrossRefGoogle Scholar
  57. Gebo DL, MacLatchy L, Kityo R, Deino A, Kingston J, Pilbeam D (1997) A Hominoid genus from the Early Miocene of Uganda. Science 276:401–404PubMedCrossRefGoogle Scholar
  58. Goodman M (1961) The role of immunochemical differences in the phyletic development of human behavior. Hum Biol 33:131–162PubMedGoogle Scholar
  59. Goodman M (1963) Man’s place in the phylogeny of the primates as reflected in serum proteins. In: Washburn S (ed) Classification and human evolution, vol III. Aldine, Chicago, pp 204–234Google Scholar
  60. Goodman M (1996) Epilogue: a personal account of the origins of a new paradigm. Mol Phylogenet Evol 5:269–285PubMedCrossRefGoogle Scholar
  61. Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell GF, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598PubMedCrossRefGoogle Scholar
  62. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524Google Scholar
  63. Haile-Selassie Y (2001) Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412:178–181PubMedCrossRefGoogle Scholar
  64. Hallström BM, Janke A (2008) Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations. BMC Evol Biol 8:162PubMedCentralPubMedCrossRefGoogle Scholar
  65. Hallström BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–2816PubMedCentralPubMedCrossRefGoogle Scholar
  66. Hallström BM, Kullberg M, Nilsson MA, Janke A (2007) Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24:2059–2068PubMedCrossRefGoogle Scholar
  67. Harada ML, Schneider H, Schneider MPC, Sampaio I, Czelusniak J, Goodman M (1995) DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol Phylogenet Evol 4:331–349PubMedCrossRefGoogle Scholar
  68. Harrison T (2002) Late oligocene to middle miocene catarrhines from Afro-Arabia. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 311–338Google Scholar
  69. Harrison T, Andrews P (2009) The anatomy and systematic position of the early Miocene proconsulid from Meswa Bridge, Kenya. J Hum Evol 56:479–496PubMedCrossRefGoogle Scholar
  70. Hart JA, Detwiler KM, Gilbert CC, Burrell AS, Fuller JL, Emetshu M, Hart TB, Vosper A, Sargis EJ, Tosi AJ (2012) Lesula: a new species of Cercopithecus monkey endemic to the Democratic Republic of Congo and implications for conservation of Congo’s Central basin. PLoS ONE 7:e44271PubMedCentralPubMedCrossRefGoogle Scholar
  71. Hartig G, Churakov G, Warren WC, Brosius J, Makałowski W, Schmitz J (2013) Retrophylogenomics place tarsiers on the evolutionary branch of Anthropoids. Sci Rep 3:1756PubMedCentralPubMedCrossRefGoogle Scholar
  72. Hartwig WC (2002) The primate fossil record. Cambridge University Press, CambridgeGoogle Scholar
  73. Hartwig WC, Meldrum DJ (2002) Miocene platyrrhines of the Northern neotropics. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 175–188Google Scholar
  74. Harvey PH, Clutton-Brock TH (1985) Life history variation in primates. Evolution 39:559CrossRefGoogle Scholar
  75. Hedges SB, Kumar S (2004) Precision of molecular time estimates. Trends Genet 20:242–247PubMedCrossRefGoogle Scholar
  76. Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229PubMedCrossRefGoogle Scholar
  77. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580PubMedCentralPubMedCrossRefGoogle Scholar
  78. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Biol 38:297–309Google Scholar
  79. Hershkovitz P (1974) A new genus of Late Oligocene monkey (Cebidae, Platyrrhini) with notes on postorbital closure and platyrrhine evolution. Folia Primatol 21:1–35PubMedCrossRefGoogle Scholar
  80. Hillis DM (1996) Inferring complex phytogenies. Nature 383:130–131PubMedCrossRefGoogle Scholar
  81. Hodgson JA, Sterner KN, Matthews LJ, Burrell AS, Jani RA, Raaum RL, Stewart C-B, Disotell TR (2009) Successive radiations, not stasis, in the South American primate fauna. Proc Natl Acad Sci 106:5534–5539PubMedCentralPubMedCrossRefGoogle Scholar
  82. Horovitz I, Zardoya R, Meyer A (1998) Platyrrhine systematics: a simultaneous analysis of molecular and morphological data. Am J Phys Anthropol 106:261–281PubMedCrossRefGoogle Scholar
  83. Horvath J, Weisrock D, Embry S, Fiorentino I, Balhoff J, Kappeler P, Wray G, Willard H, Yoder AD (2008) Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar’s Lemurs. Genome Res 18:489–499PubMedCentralPubMedCrossRefGoogle Scholar
  84. Inoue J, Donoghue PCJ, Yang Z (2010) The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 59:74–89PubMedCrossRefGoogle Scholar
  85. Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME (2011) Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455PubMedCentralPubMedCrossRefGoogle Scholar
  86. Jablonski NG, Chaplin G (2009) The fossil record of Gibbons. In: Whittaker D, Lappan S (eds) The Gibbons: new perspectives on small ape socioecology and population biology, Developments in primatology: progress and prospects. Springer, New York, pp 111–130CrossRefGoogle Scholar
  87. Jablonski NG, Leakey MG, Kiarie C, Antón M (2002) A new skeleton of Theropithecus brumpti (Primates: Cercopithecidae) from Lomekwi, West Turkana, Kenya. J Hum Evol 43:887–923PubMedCrossRefGoogle Scholar
  88. Jameson NM, Hou Z-C, Sterner KN, Weckle A, Goodman M, Steiper ME, Wildman DE (2011) Genomic data reject the hypothesis of a prosimian primate clade. J Hum Evol 61:295–305PubMedCrossRefGoogle Scholar
  89. Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794PubMedCrossRefGoogle Scholar
  90. Janečka JE, Helgen KM, Lim NT-L, Baba M, Izawa M, Boeadi, Murphy WJ (2008) Evidence for multiple species of Sunda colugo. Curr Biol 18:R1001–R1002PubMedCrossRefGoogle Scholar
  91. Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Paäbo S (1994) The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256PubMedCentralPubMedGoogle Scholar
  92. Jolly CJ (1993) Species, subspecies, and baboon systematics. In: Kimbel WH, Martin LB (eds) Species, species concepts, and primate evolution. Plenum Press, New York, pp 67–108CrossRefGoogle Scholar
  93. Kappelman J, Kelley J, Pilbeam D, Sheikh KA, Ward S, Anwar M, Barry JC, Brown B, Hake P, Johnson NM, Raza SM, Shah SMI (1991) The earliest occurrence of Sivapithecus from the middle Miocene Chinji Formation of Pakistan. J Hum Evol 21:61–73CrossRefGoogle Scholar
  94. Karanth KP, Singh L, Collura RV, Stewart C-B (2008) Molecular phylogeny and biogeography of Langurs and Leaf monkeys of South Asia (Primates: Colobinae). Mol Phylogenet Evol 46:683–694PubMedCrossRefGoogle Scholar
  95. Kay RF (1990) The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). J Hum Evol 19:175–208CrossRefGoogle Scholar
  96. Kay RF, Fleagle JG (2010) Stem taxa, homoplasy, long lineages, and the phylogenetic position of Dolichocebus. J Hum Evol 59:218–222CrossRefGoogle Scholar
  97. Kay RF, Macfadden BJ, Madden RH, Sandeman H, Anaya F (1998) Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American land mammal “Age”. J Vertebr Paleontol 18:189–199CrossRefGoogle Scholar
  98. Kay RF, Campbell VM, Rossie JB, Colbert MW, Rowe TB (2004) Olfactory fossa of Tremacebus harringtoni (Platyrrhini, early Miocene, Sacanana, Argentina): implications for activity pattern. Anat Rec A Discov Mol Cell Evol Biol 281A:1157–1172CrossRefGoogle Scholar
  99. Kay RF, Fleagle JG, Mitchell TRT, Colbert M, Bown T, Powers DW (2008) The anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from Argentina. J Hum Evol 54:323–382PubMedCrossRefGoogle Scholar
  100. Kelley J (2002) The hominoid radiation in Asia. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 369–384Google Scholar
  101. Kitazoe Y, Kishino H, Waddell PJ, Nakajima N, Okabayashi T, Watabe T, Okuhara Y (2007) Robust time estimation reconciles views of the antiquity of placental mammals. PLoS ONE 2:e384PubMedCentralPubMedCrossRefGoogle Scholar
  102. Köhler M, Moyà-Solà S, Alba DM (2000) Macaca (Primates, Cercopithecidae) from the Late Miocene of Spain. J Hum Evol 38:447–452PubMedCrossRefGoogle Scholar
  103. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91PubMedCentralPubMedCrossRefGoogle Scholar
  104. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920PubMedCrossRefGoogle Scholar
  105. Kumar S, Filipski A, Swarna V, Walker A, Hedges SB (2005) Placing confidence limits on the molecular age of the human-chimpanzee divergence. Proc Natl Acad Sci 102:18842–18847PubMedCentralPubMedCrossRefGoogle Scholar
  106. Langergraber KE, Prüfer K, Rowney C, Boesch C, Crockford C, Fawcett K, Inoue E, Inoue-Muruyama M, Mitani JC, Muller MN, Robbins MM, Schubert G, Stoinski TS, Viola B, Watts D, Wittig RM, Wrangham RW, Zuberbühler K, Pääbo S, Vigilant L (2012) Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci 109:15716–15721PubMedCentralPubMedCrossRefGoogle Scholar
  107. Leakey MG (1993) Evolution of theropithecus in the Turkana basin. In: Jablonski NG (ed) Theropithecus: the rise and fall of a primate genus. Cambridge University Press, Cambridge, pp 85–123CrossRefGoogle Scholar
  108. Leakey MG, Ungar PS, Walker A (1995) A new genus of large primate from the Late Oligocene of Lothidok, Turkana District, Kenya. J Hum Evol 28:519–531CrossRefGoogle Scholar
  109. Lebatard A-E, Bourlès DL, Duringer P, Jolivet M, Braucher R, Carcaillet J, Schuster M, Arnaud N, Monié P, Lihoreau F, Likius A, Mackaye HT, Vignaud P, Brunet M (2008) Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proc Natl Acad Sci 105:3226–3231PubMedCentralPubMedCrossRefGoogle Scholar
  110. Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM (2009) The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol 58:130–145PubMedCrossRefGoogle Scholar
  111. Li W-H, Ellsworth DL, Krushkal J, Chang BH-J, Hewett-Emmett D (1996) Rates of nucleotide substitution in primates and rodents and the generation–time effect hypothesis. Mol Phylogenet Evol 5:182–187PubMedCrossRefGoogle Scholar
  112. Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B, Ming L, Yongcheng L, Zhang Y-P, Nadler T, Zinner D, Roos C (2012) Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS ONE 7:e37418PubMedCentralPubMedCrossRefGoogle Scholar
  113. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB, Holloway AK, Clamp M, Gnerre S, Alfoldi J, Beal K, Chang J, Clawson H, Cuff J, Di Palma F, Fitzgerald S, Flicek P, Guttman M, Hubisz MJ, Jaffe DB, Jungreis I, Kent WJ, Kostka D, Lara M, Martins AL, Massingham T, Moltke I, Raney BJ, Rasmussen MD, Robinson J, Stark A, Vilella AJ, Wen J, Xie X, Zody MC, Worley KC, Kovar CL, Muzny DM, Gibbs RA, Warren WC, Mardis ER, Weinstock GM, Wilson RK, Birney E, Margulies EH, Herrero J, Green ED, Haussler D, Siepel A, Goldman N, Pollard KS, Pedersen JS, Lander ES, Kellis M (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:476–482PubMedCentralPubMedCrossRefGoogle Scholar
  114. Liu F-GR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789PubMedCrossRefGoogle Scholar
  115. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536CrossRefGoogle Scholar
  116. Maiolino S, Boyer DM, Bloch JI, Gilbert CC, Groenke J (2012) Evidence for a grooming claw in a North American Adapiform primate: implications for Anthropoid origins. PLoS ONE 7:e29135PubMedCentralPubMedCrossRefGoogle Scholar
  117. Masters JC, Silvestro D, Génin F, DelPero M (2013) Seeing the wood through the trees: the current state of higher systematics in the Strepsirhini. Folia Primatol 84:201–219PubMedCrossRefGoogle Scholar
  118. Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66PubMedCrossRefGoogle Scholar
  119. McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC (2012) Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22:746–754PubMedCentralPubMedCrossRefGoogle Scholar
  120. McKenna MC, Bell SK, Simpson GG (1997) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  121. McLain AT, Meyer TJ, Faulk C, Herke SW, Oldenburg JM, Bourgeois MG, Abshire CF, Roos C, Batzer MA (2012) An alu-based phylogeny of lemurs (Infraorder: Lemuriformes). PLoS ONE 7:e44035PubMedCentralPubMedCrossRefGoogle Scholar
  122. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524PubMedCrossRefGoogle Scholar
  123. Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA (2012) An alu-based phylogeny of gibbons (Hylobatidae). Mol Biol Evol 29:3441–3450PubMedCentralPubMedCrossRefGoogle Scholar
  124. Misawa K, Nei M (2003) Reanalysis of Murphy et al’.s data gives various mammalian phylogenies and suggests overcredibility of Bayesian trees. J Mol Evol 57:S290–S296PubMedCrossRefGoogle Scholar
  125. Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O’Connell MJ (2013) Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 30:2145–2156PubMedCentralPubMedCrossRefGoogle Scholar
  126. Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J (2004) Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain. Science 306:1339–1344PubMedCrossRefGoogle Scholar
  127. Moyà-Solà S, Alba DM, Almécija S, Casanovas-Vilar I, Köhler M, Esteban-Trivigno SD, Robles JM, Galindo J, Fortuny J (2009) A unique Middle Miocene European hominoid and the origins of the great ape and human clade. Proc Natl Acad Sci 106:9601–9606PubMedCentralPubMedCrossRefGoogle Scholar
  128. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  129. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  130. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421PubMedCentralPubMedCrossRefGoogle Scholar
  131. Nie W, Fu B, O’Brien PC, Wang J, Su W, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang F (2008) Flying lemurs – the “flying tree shrews”? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biol 6:18PubMedCentralPubMedCrossRefGoogle Scholar
  132. Nikolaev S, Montoya-Burgos JI, Margulies EH, Program NCS, Rougemont J, Nyffeler B, Antonarakis SE (2007) Early history of mammals is elucidated with the ENCODE multiple species sequencing data. PLoS Genet 3:e2PubMedCentralPubMedCrossRefGoogle Scholar
  133. Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci 103:9929–9934PubMedCentralPubMedCrossRefGoogle Scholar
  134. Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc Natl Acad Sci 106:5235–5240PubMedCentralPubMedCrossRefGoogle Scholar
  135. Novacek MJ (1992) Mammalian phytogeny: shaking the tree. Nature 356:121–125PubMedCrossRefGoogle Scholar
  136. Novacek MJ, Wyss AR, McKenna MC (1988) The major groups of eutherian mammals. In: Benton MJ (ed) The phylogeny and classification of the Tetrapods, vol 2, (Mammals). The systematics association. Oxford University Press, Oxford, pp 31–72Google Scholar
  137. O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–667PubMedCrossRefGoogle Scholar
  138. Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M (2006) Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 40:274–280PubMedCrossRefGoogle Scholar
  139. Osterholz M, Walter L, Roos C (2008) Phylogenetic position of the Langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evol Biol 8:58PubMedCentralPubMedCrossRefGoogle Scholar
  140. Osterholz M, Walter L, Roos C (2009) Retropositional events consolidate the branching order among New World monkey genera. Mol Phylogenet Evol 50:507–513PubMedCrossRefGoogle Scholar
  141. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583PubMedGoogle Scholar
  142. Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342PubMedCentralPubMedCrossRefGoogle Scholar
  143. Perez SI, Klaczko J, dos Reis SF (2012) Species tree estimation for a deep phylogenetic divergence in the New World monkeys (Primates: Platyrrhini). Mol Phylogenet Evol 65:621–630PubMedCrossRefGoogle Scholar
  144. Perez SI, Tejedor MF, Novo NM, Aristide L (2013) Divergence times and the evolutionary radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PLoS ONE 8:e68029PubMedCentralPubMedCrossRefGoogle Scholar
  145. Pettigrew JD, Jamieson BGM, Robson SK, Hall LS, McAnally KI, Cooper HM (1989) Phylogenetic relations between Microbats, Megabats and Primates (Mammalia: Chiroptera and Primates). Philos Trans R Soc Lond B Biol Sci 325:489–559PubMedCrossRefGoogle Scholar
  146. Pilbeam D, Rose MD, Barry JC, Shah SMI (1990) New Sivapithecus humeri from Pakistan and the relationship of Sivapithecus and Pongo. Nature 348:237–239PubMedCrossRefGoogle Scholar
  147. Pollock DD, Zwickl DJ, McGuire JA, Hillis DM (2002) Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 51:664–671PubMedCentralPubMedCrossRefGoogle Scholar
  148. Porter CA, Czelusniak J, Schneider H, Schneider MPC, Sampaio I, Goodman M (1997) Sequences of the primate ϵ-globin gene: implications for systematics of the marmosets and other New World primates. Gene 205:59–71PubMedCrossRefGoogle Scholar
  149. Porter CA, Czelusniak J, Schneider H, Schneider MP, Sampaio I, Goodman M (1999) Sequences from the 5’ flanking region of the epsilon-globin gene support the relationship of Callicebus with the pitheciins. Am J Primatol 48:69–75PubMedCrossRefGoogle Scholar
  150. Poux C, Douzery EJP (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1–16PubMedCrossRefGoogle Scholar
  151. Prasad GVR (2009) Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India. J Biosci 34:649–659PubMedCrossRefGoogle Scholar
  152. Prasad A, Allard MW, Program NCS, Green E (2008) Confirming the phylogeny of mammals by use of large comparative sequence datasets. Mol Biol Evol 25:1795–1808PubMedCentralPubMedCrossRefGoogle Scholar
  153. Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47:709–717PubMedCrossRefGoogle Scholar
  154. Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc B Biol Sci 348:405–421CrossRefGoogle Scholar
  155. Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257PubMedCrossRefGoogle Scholar
  156. Rasmussen DT (2002) Early catarrhines of the African Eocene and Oligocene. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 203–220Google Scholar
  157. Rasmussen DT, Nekaris KA (1998) Evolutionary history of Lorisiform primates. Folia Primatol (Basel) 69:250–285CrossRefGoogle Scholar
  158. Ray DA, Xing J, Hedges DJ, Hall MA, Laborde ME, Anders BA, White BR, Stoilova N, Fowlkes JD, Landry KE, Chemnick LG, Ryder OA, Batzer MA (2005) Alu insertion loci and platyrrhine primate phylogeny. Mol Phylogenet Evol 35:117–126PubMedCrossRefGoogle Scholar
  159. Ray DA, Xing J, Salem A-H, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55:928–935PubMedCrossRefGoogle Scholar
  160. Renne PR, WoldeGabriel G, Hart WK, Heiken G, White TD (1999) Chronostratigraphy of the Miocene–Pliocene Sagantole formation, Middle Awash Valley, Afar Rift, Ethiopia. Geol Soc Am Bull 111:869–885CrossRefGoogle Scholar
  161. Richmond B, Jungers W (2008) Orrorin tugenensis femoral morphology and the evolution of Hominin bipedalism. Science 319:1662PubMedCrossRefGoogle Scholar
  162. Roberts TE, Davenport TRB, Hildebrandt KBP, Jones T, Stanley WT, Sargis EJ, Olson LE (2010) The biogeography of introgression in the critically endangered African monkey Rungwecebus kipunji. Biol Lett 6:233–237PubMedCentralPubMedCrossRefGoogle Scholar
  163. Roberts TE, Lanier HC, Sargis EJ, Olson LE (2011) Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol Phylogenet Evol 60:358–372PubMedCrossRefGoogle Scholar
  164. Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP (2013) Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 30:2134–2144PubMedCrossRefGoogle Scholar
  165. Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci 101:10650–10654PubMedCentralPubMedCrossRefGoogle Scholar
  166. Roos C, Zinner D, Kubatko LS, Schwarz C, Yang M, Meyer D, Nash SD, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farajallah D, Nadler T, Walter L, Osterholz M (2011) Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 11:77PubMedCentralPubMedCrossRefGoogle Scholar
  167. Rose KD, Rana RS, Sahni A, Kumar K, Missiaen P, Singh L, Smith T (2009) Early Eocene primates from Gujarat, India. J Hum Evol 56:366–404PubMedCrossRefGoogle Scholar
  168. Rosenberger AL (1979) Cranial anatomy and implications of Dolichocebus, a Late Oligocene ceboid primate. Nature 279:416–418PubMedCrossRefGoogle Scholar
  169. Rosenberger AL (2002) Platyrrhine paleontology and systematics: the paradigm shifts. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 151–160Google Scholar
  170. Rosenberger AL (2010) Platyrrhines, PAUP, parallelism, and the long lineage hypothesis: a reply to Kay et al. (2008). J Hum Evol 59:214–217PubMedCrossRefGoogle Scholar
  171. Rosenberger AL, Hartwig WC, Takai M, Setoguchi T, Shigehara N (1991) Dental variability in Saimiri and the taxonomic status of Neosaimiri fieldsi, an early Squirrel monkey from La Venta, Colombia. Int J Primatol 12:291–301CrossRefGoogle Scholar
  172. Rosenberger AL, Tejedor MF, Cooke SB, Pekar S (2009) Platyrrhine Ecophylogenetics in space and time. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American primates. Developments in primatology: progress and prospects. Springer, New York, pp 69–113CrossRefGoogle Scholar
  173. Rossie JB, Ni X, Beard KC (2006) Cranial remains of an Eocene Tarsier. Proc Natl Acad Sci 103:4381–4385PubMedCentralPubMedCrossRefGoogle Scholar
  174. Rossie JB, Gilbert CC, Hill A (2013) Early cercopithecid monkeys from the Tugen Hills, Kenya. Proc Natl Acad Sci 110:5818–5822PubMedCentralPubMedCrossRefGoogle Scholar
  175. Roure B, Baurain D, Philippe H (2013) Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Mol Biol Evol 30:197–214PubMedCrossRefGoogle Scholar
  176. Ruff C (2010) Body size and body shape in early hominins – implications of the Gona pelvis. J Hum Evol 58:166–178PubMedCrossRefGoogle Scholar
  177. Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231CrossRefGoogle Scholar
  178. Sarich VM, Wilson AC (1966) Quantitative immunochemistry and the evolution of primate albumins: micro-complement fixation. Science 154:1563–1566PubMedCrossRefGoogle Scholar
  179. Sarich V, Wilson A (1967) Immunological time scale for hominid evolution. Science 158:1200–1203PubMedCrossRefGoogle Scholar
  180. Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784PubMedCentralPubMedGoogle Scholar
  181. Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553PubMedCrossRefGoogle Scholar
  182. Schneider H, Schneider MPC, SAMPAIO I, Harada ML, Stanhope M, Czelusniak J, Goodman M (1993) Molecular phylogeny of the New World Monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 2:225–242PubMedCrossRefGoogle Scholar
  183. Schneider H, Sampaio I, Harada ML, Barroso CML, Schneider MPC, Czelusniak J, Goodman M (1996) Molecular phylogeny of the New World monkeys (Platyrrhini, primates) based on two unlinked nuclear genes: IRBP intron 1 and ϵ-globin sequences. Am J Phys Anthropol 100:153–179PubMedCrossRefGoogle Scholar
  184. Schneider H, Canavez FC, Sampaio I, Moreira MÂM, Tagliaro CH, Seuánez HN (2001) Can molecular data place each neotropical monkey in its own branch? Chromosoma 109:515–523PubMedCrossRefGoogle Scholar
  185. Schrago CG, Voloch CM (2013) The precision of the hominid timescale estimated by relaxed clock methods. J Evol Biol 26:746–755PubMedCrossRefGoogle Scholar
  186. Schrago CG, Menezes AN, Moreira MAM, Pissinatti A, Seuánez HN (2012) Chronology of deep nodes in the neotropical primate phylogeny: insights from mitochondrial genomes. PLoS ONE 7:e51699PubMedCentralPubMedCrossRefGoogle Scholar
  187. Schrago CG, Mello B, Soares AER (2013) Combining fossil and molecular data to date the diversification of New World primates. J Evol Biol 26:2438–2446PubMedCrossRefGoogle Scholar
  188. Seiffert ER (2006) Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proc Natl Acad Sci 103:5000–5005PubMedCentralPubMedCrossRefGoogle Scholar
  189. Seiffert ER (2007) Early evolution and biogeography of lorisiform strepsirrhines. Am J Primatol 69:27–35PubMedCrossRefGoogle Scholar
  190. Seiffert ER (2012) Early primate evolution in Afro-Arabia. Evol Anthropol 21:239–253PubMedCrossRefGoogle Scholar
  191. Seiffert ER, Simons EL, Attia Y (2003) Fossil evidence for an ancient divergence of Lorises and Galagos. Nature 422:421–424PubMedCrossRefGoogle Scholar
  192. Seiffert ER, Simons EL, Clyde WC, Rossie JB, Attia Y, Bown TM, Chatrath P, Mathison ME (2005) Basal anthropoids from Egypt and the antiquity of Africa’s higher primate radiation. Science 310:300–304PubMedCrossRefGoogle Scholar
  193. Seiffert ER, Perry JMG, Simons EL, Boyer DM (2009) Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature 461:1118–1121PubMedCrossRefGoogle Scholar
  194. Senut B, Pickford M, Gommery D, Mein P, Cheboi K, Coppens Y (2001) First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus Académie Sci Ser IIA Earth Planet Sci 332:137–144Google Scholar
  195. Setoguchi T, Rosenberger AL (1987) A fossil owl monkey from La Venta, Colombia. Nature 326:692–694PubMedCrossRefGoogle Scholar
  196. Shoshani J, McKenna MC (1998) Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol Phylogenet Evol 9:572–584PubMedCrossRefGoogle Scholar
  197. Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novit 3103:1–54Google Scholar
  198. Simmons MP (2012) Radical instability and spurious branch support by likelihood when applied to matrices with non-random distributions of missing data. Mol Phylogenet Evol 62:472–484PubMedCrossRefGoogle Scholar
  199. Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462PubMedCrossRefGoogle Scholar
  200. Simons EL, Rasmussen DT (1996) Skull of Catopithecus browni, an early tertiary catarrhine. Am J Phys Anthropol 100:261–292PubMedCrossRefGoogle Scholar
  201. Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350Google Scholar
  202. Smith JD, Madkour G (1980) Penial morphology and the question of chiropteran phylogeny. In: Wilson DE, Gardner AL (eds) Proceedings of the Fifth International Bat Research Conference. Texas Tech Press, Lubbock, pp 347–365Google Scholar
  203. Smith AB, Peterson KJ (2002) Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30:65–88CrossRefGoogle Scholar
  204. Song G, Riemer C, Dickins B, Kim HL, Zhang L, Zhang Y, Hsu C-H, Hardison RC, Green ED, Miller W (2012a) Revealing mammalian evolutionary relationships by comparative analysis of gene clusters. Genome Biol Evol 4:586–601PubMedCentralPubMedCrossRefGoogle Scholar
  205. Song S, Liu L, Edwards SV, Wu S (2012b) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci 109:14942–14947PubMedCentralPubMedCrossRefGoogle Scholar
  206. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the cretaceous–tertiary boundary. Proc Natl Acad Sci 100:1056–1061PubMedCentralPubMedCrossRefGoogle Scholar
  207. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janečka JE, Fisher CA, Murphy WJ (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE 7:e49521PubMedCentralPubMedCrossRefGoogle Scholar
  208. Steiper ME, Ruvolo M (2003) New World monkey phylogeny based on X-linked G6PD DNA sequences. Mol Phylogenet Evol 27:121–130PubMedCrossRefGoogle Scholar
  209. Steiper ME, Seiffert ER (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Natl Acad Sci 109:6006–6011PubMedCentralPubMedCrossRefGoogle Scholar
  210. Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394PubMedCrossRefGoogle Scholar
  211. Steiper ME, Young NM, Sukarna TY (2004) Genomic data support the hominoid slowdown and an Early Oligocene estimate for the hominoid-cercopithecoid divergence. Proc Natl Acad Sci 101:17021–17026PubMedCentralPubMedCrossRefGoogle Scholar
  212. Sterner KN, Raaum RL, Zhang Y, Stewart C-B, Disotell TR (2006) Mitochondrial data support an odd-nosed colobine clade. Mol Phylogenet Evol 40:1–7PubMedCrossRefGoogle Scholar
  213. Stevens NJ, Seiffert ER, O’Connor PM, Roberts EM, Schmitz MD, Krause C, Gorscak E, Ngasala S, Hieronymus TL, Temu J (2013) Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes. Nature 497:611–614PubMedCrossRefGoogle Scholar
  214. Stirton RA (1951) Ceboid monkeys from the Miocene of Columbia. Bull Dep Geol Univ Calif 28:315–356Google Scholar
  215. Suwa G, Kono RT, Katoh S, Asfaw B, Beyene Y (2007) A new species of great ape from the Late Miocene epoch in Ethiopia. Nature 448:921–924PubMedCrossRefGoogle Scholar
  216. Switek B (2010) Ancestor or Adapiform? Darwinius and the search for our early primate ancestors. Evol Educ Outreach 3:468–476CrossRefGoogle Scholar
  217. Szalay FS (1977) Phylogenetic relationships and a classification of the Eutherian mammalia. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 315–374CrossRefGoogle Scholar
  218. Tabuce R, Mahboubi M, Tafforeau P, Sudre J (2004) Discovery of a highly-specialized plesiadapiform primate in the Early-middle Eocene of Northwestern Africa. J Hum Evol 47:305–321PubMedCrossRefGoogle Scholar
  219. Takai M (1994) New specimens of Neosaimiri fieldsi from La Venta, Colombia: a Middle Miocene ancestor of the living squirrel monkeys. J Hum Evol 27:329–360CrossRefGoogle Scholar
  220. Takai M, Anaya F (1996) New specimens of the oldest fossil platyrrhine, Branisella boliviana, from Salla, Bolivia. Am J Phys Anthropol 99:301–317PubMedCrossRefGoogle Scholar
  221. Takai M, Anaya F, Shigehara N, Setoguchi T (2000) New fossil materials of the earliest New World monkey, Branisella boliviana, and the problem of platyrrhine origins. Am J Phys Anthropol 111:263–281PubMedCrossRefGoogle Scholar
  222. Tassy P, Pickford M (1983) Un nouveau mastodonte zygolophodonte (Proboscidea, Mammalia) dans le Miocène inférieur d’Afrique orientale: Systématique et paléoenvironnement. Gebios 16:53–77CrossRefGoogle Scholar
  223. Teeling EC, Hedges SB (2013) Making the impossible possible: rooting the tree of placental mammals. Mol Biol Evol 30:1999–2000PubMedCrossRefGoogle Scholar
  224. Tejedor MF (2008) The origin and evolution of neotropical primates. Arq Mus Nac Rio Jan 66:251–269Google Scholar
  225. Ting N, Sterner KN (2013) Primate molecular phylogenetics in a genomic era. Mol Phylogenet Evol 66:565–568PubMedCrossRefGoogle Scholar
  226. Ting N, Tosi AJ, Li Y, Zhang Y, Disotell TR (2008) Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys. Mol Phylogenet Evol 46:466–474PubMedCrossRefGoogle Scholar
  227. Tosi AJ, Morales JC, Melnick DJ (2003) Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution 57:1419–1435PubMedCrossRefGoogle Scholar
  228. Tosi AJ, Detwiler KM, Disotell TR (2005) X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Mol Phylogenet Evol 36:58–66PubMedCrossRefGoogle Scholar
  229. Tsantes C, Steiper ME (2009) Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc Natl Acad Sci 106:18165–18170PubMedCentralPubMedCrossRefGoogle Scholar
  230. Vignaud P, Duringer P, Mackaye HT, Likius A, Blondel C, Boisserie J-R, de Bonis L, Eisenmann V, Etienne M-E, Geraads D, Guy F, Lehmann T, Lihoreau F, Lopez-Martinez N, Mourer-Chauviré C, Otero O, Rage J-C, Schuster M, Viriot L, Zazzo A, Brunet M (2002) Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature 418:152–155PubMedCrossRefGoogle Scholar
  231. Von Dornum M, Ruvolo M (1999) Phylogenetic relationships of the New World monkeys (Primates, Platyrrhini) based on nuclear G6PD DNA sequences. Mol Phylogenet Evol 11:459–476CrossRefGoogle Scholar
  232. Waddell PJ, Shelley S (2003) Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol 28:197–224PubMedCrossRefGoogle Scholar
  233. Waddell PJ, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genome Inform Int Conf Genome Inform 12:141–154Google Scholar
  234. Wall JD, Kim SK, Luca F, Carbone L, Mootnick AR, de Jong PJ, Di Rienzo A (2013) Incomplete lineage sorting is common in extant gibbon genera. PLoS ONE 8:e53682PubMedCentralPubMedCrossRefGoogle Scholar
  235. Wang XP, Yu L, Roos C, Ting N, Chen CP, Wang J, Zhang YP (2012) Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers. PLoS ONE 7:e36274PubMedCentralPubMedCrossRefGoogle Scholar
  236. Ward S (1997) The taxonomy and phylogenetic relationships of Sivapithecus revisited. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: Miocene hominoid evolution and adaptation. Plenum Press, New York, pp 269–290CrossRefGoogle Scholar
  237. Waters PD, Dobigny G, Waddell PJ, Robinson TJ (2007) Evolutionary history of LINE-1 in the major clades of placental mammals. PLoS ONE 2:e158PubMedCentralPubMedCrossRefGoogle Scholar
  238. Weisrock DW, Rasoloarison RM, Fiorentino I, Ralison JM, Goodman SM, Kappeler PM, Yoder AD (2010) Delimiting species without nuclear monophyly in Madagascar’s Mouse lemurs. PLoS ONE 5:e9883PubMedCentralPubMedCrossRefGoogle Scholar
  239. Wiens JJ, Tiu J (2012) Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS ONE 7:e42925PubMedCentralPubMedCrossRefGoogle Scholar
  240. Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci 104:14395–14400PubMedCentralPubMedCrossRefGoogle Scholar
  241. Wildman DE, Jameson NM, Opazo JC, Yi SV (2009) A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Mol Phylogenet Evol 53:694–702PubMedCrossRefGoogle Scholar
  242. Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavare S (2010) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16–31PubMedCentralPubMedCrossRefGoogle Scholar
  243. Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci 82:1741–1745PubMedCentralPubMedCrossRefGoogle Scholar
  244. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23:212–226PubMedCrossRefGoogle Scholar
  245. Yi S, Ellsworth DL, Li W-H (2002) Slow molecular clocks in Old World monkeys, Apes, and humans. Mol Biol Evol 19:2191–2198PubMedCrossRefGoogle Scholar
  246. Yoder AD (2013) The lemur revolution starts now: the genomic coming of age for a non-model organism. Mol Phylogenet Evol 66:442–452PubMedCrossRefGoogle Scholar
  247. Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424PubMedCrossRefGoogle Scholar
  248. Young NM, MacLatchy L (2004) The phylogenetic position of Morotopithecus. J Hum Evol 46:163–184PubMedCrossRefGoogle Scholar
  249. Ziętkiewicz E, Richer C, Labuda D (1999) Phylogenetic affinities of Tarsier in the context of primate alu repeats. Mol Phylogenet Evol 11:77–83PubMedCrossRefGoogle Scholar
  250. Zinner D, Arnold AL, Roos C (2009) Is the New Primate Genus Rungwecebus a Baboon? PLoS ONE 4:e4859PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Anthropology, Lehman College and The Graduate CenterThe City University of New YorkBronxUSA
  2. 2.The New York Consortium in Evolutionary Primatology (NYCEP)New YorkUSA

Personalised recommendations