Advertisement

Short-Range Ensemble Forecast Post-processing

  • Marie-Amélie BoucherEmail author
  • Emmanuel Roulin
  • Vincent Fortin
Reference work entry

Abstract

Short-term hydrological ensemble forecasts do not usually account for the uncertainty in the initial conditions. Consequently, raw forecasts are often biased and under-dispersed and must be post-processed. Both precipitation and streamflow forecasts for short lead-time depart from the Gaussian distribution, and this important characteristic limits the choice of possible post-processing approaches. Post-processing is performed by calibrating a statistical model using a training dataset containing past forecasts and the corresponding observations. This chapter covers the most common post-processing approaches for short-term hydrological forecasts. They are divided into four categories: analog methods, regressions, kernel dressing, and Bayesian Model Averaging. The vast majority of post-processing methods can be categorized as regression-based. A selection of the most commonly encountered ones in hydrology is presented: quantile regression, nonhomogeneous regression, and logistic regression. Any post-processing approach brings benefits and drawbacks, which are discussed at the end of this chapter. However, according to the few existing comparative studies, no single method is appropriate for all forecasting situation. Therefore, the reader should make his or her own mind regarding which one to choose, according to his or her own specific needs and limitations.

Keywords

Analogs Kernel dressing Bayesian Model Averaging Logistic regression Quantile regression Generalized linear models Nonhomogeneous regression Preprocessing Post-processing Short-range ensemble forecasts 

References

  1. S. Applequist, G.E. Gahrs, R.L. Pfeffer, X.-F. Niu, Comparison of methodologies for probabilistic quantitative precipitation forecasting. Weather Forecast. 17(4), 783–799 (2002)CrossRefGoogle Scholar
  2. Z. Ben Bouallègue, Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Weather Forecast. 28(2), 515–524 (2013)CrossRefGoogle Scholar
  3. M.-A. Boucher, L. Perreault, F. Anctil, A.-C. Favre, Exploratory analysis of statistical post-processing methods for hydrological ensemble forecasts, a comparative study. Hydrol. Process. 29, 1141–1155 (2015)CrossRefGoogle Scholar
  4. J.B. Bremnes, Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Weather Rev. 132, 338–347 (2004)CrossRefGoogle Scholar
  5. J. Broecker, L.A. Smith, From ensemble forecasts to predictive distribution functions. Tellus Ser A 60(4), 663–678 (2008)CrossRefGoogle Scholar
  6. G.M. Carter, J.P. Dallavalle, H.R. Glahn, Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Weather Forecast. 4, 401–412 (1989)CrossRefGoogle Scholar
  7. M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5(1), 243–262 (2004)CrossRefGoogle Scholar
  8. J. Demargne, L. Wu, S.K. Regonda, J.D. Brown, H. Lee, M.X. He, D.J. Seo, R. Hartman, H.D. Herr, M. Fresch, J. Schaake, Y.J. Zhu, The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 95(1), 79–98 (2014)CrossRefGoogle Scholar
  9. V. Fortin, A.-C. Favre, M. Saïd, Probabilistic forecasting from ensemble prediction systems: improving upon the best-member method by using a different weight and dressing kernel for each member. Q. J. R. Meteorol. Soc. 132(617), 1349–1369 (2006)CrossRefGoogle Scholar
  10. C. Fraley, A.E. Raftery, J.M. Sloughter, T. Gneiting, ensembleBMA: An R Package for Probabilistic Forecasting Using Ensembles and Bayesian Model Averaging. Technical Report 516 (Department of Statistics, University of Washington, 2007)Google Scholar
  11. C. Fraley, A.E. Raftery, T. Gneiting, Calibrating multi-model forecast ensembles with exchangeable and missing members using Bayesian Model Averaging. Mon. Weather Rev. 138, 190–202 (2010)CrossRefGoogle Scholar
  12. P. Friederichs, A. Hense, Statistical downscaling of extreme precipitation events using censored quantile regression. Mon. Weather Rev. 135(6), 2365–2378 (2007)CrossRefGoogle Scholar
  13. F. Fundel, M. Zappa, Hydrological ensemble forecasting in mesoscale catchments: sensitivity to initial conditions and value of reforecasts. Water Resour. Res. 47(9), p 9520 (2011)Google Scholar
  14. H.R. Glahn, D.A. Lowry, The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11, 1203–1211 (1972)CrossRefGoogle Scholar
  15. T. Gneiting, A.-E. Raftery, A.-H. Westveld, T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133(5), 1098–1118 (2005)CrossRefGoogle Scholar
  16. T.M. Hamill, Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous United States. Mon. Weather Rev. 140, 2232–2252 (2012)CrossRefGoogle Scholar
  17. T.M. Hamill, J.S. Whitaker, Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application. Mon. Weather Rev. 134(11), 3209–3229 (2006)CrossRefGoogle Scholar
  18. J.A. Hoeting, D. Madigan, A.E. Raftery, C.T. Volinsky, Bayesian Model Averaging: a tutorial (with discussion). Stat. Sci. 14(4), 382–417 (1999). Correction: vol. 15, pp. 193–195. The corrected version is available at http://www.stat.washington.edu/www/research/online/hoeting1999.pdf
  19. C. Johnson, N. Bowler, On the reliability and calibration of ensemble forecasts. Mon. Weather Rev. 137, 1717–1720 (2009)CrossRefGoogle Scholar
  20. T.H. Kang, Y.O. Kim, I.P. Hong, Comparison of pre- and post-processors for ensemble streamflow prediction. Atmos. Sci. Lett. 11(2), 153–159 (2010)CrossRefGoogle Scholar
  21. R. Koenker, Quantile regression in R: a vignette (2018). Retrieved from https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
  22. R. Koenker, G. Basset, Regression quantiles. Econometrica 46(1), 33–50 (1978)CrossRefGoogle Scholar
  23. E.N. Lorenz, Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26(4), 636–646 (1969)CrossRefGoogle Scholar
  24. R. Marty, V. Fortin, H. Kuswanto, A.-C. Favre, E. Parent, Combining the Bayesian processor of output with Bayesian Model Averaging for reliable ensemble forecasting. J. R. Stat. Soc. C Appl. Stat. 64(1), 75–92 (2014)CrossRefGoogle Scholar
  25. J.W. Messner, A. Zeileis, crch: Censored Regression with Conditional Heteroscedasticity (2013). R package version 0.1-0Google Scholar
  26. J.W. Messner, G.J. Mayr, D.S. Wilks, A. Zeileis, Extending extended logistic regression: extended vs. separate vs. ordered vs. censored. Mon. Weather Rev. 142(8), 3003–3014 (2014a)Google Scholar
  27. J.W. Messner, G.J. Mayr, A. Zeileis, D.S. Wilks, Heteroscedastic extended logistic regression for post-processing of ensemble guidance. Mon. Weather Rev. 142(1), 448–456 (2014b)CrossRefGoogle Scholar
  28. J.A. Nelder, R.W.M. Wedderburn, Generalized linear models. J. R. Stat. Soc. Ser. A Gen. 135(3), 370–384 (1972)CrossRefGoogle Scholar
  29. T.C. Pagano, D.L. Shrestha, Q.J. Wang, D. Robertson, P. Hapuarachchi, Ensemble dressing for hydrological applications. Hydrol. Process. 27(1), 106–116 (2013)CrossRefGoogle Scholar
  30. A.E. Raftery, T. Gneiting, F. Balabdaoui, M. Polakowski, Using Bayesian Model Averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005)CrossRefGoogle Scholar
  31. E. Roulin, S. Vannitsem, Post-processing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Weather Rev. 140, 874–888 (2012)CrossRefGoogle Scholar
  32. E. Roulin, S. Vannitsem, Post-processing of medium range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors. Hydrol. Process. 29(6), 1434–1449 (2014)CrossRefGoogle Scholar
  33. M.-S. Roulston, L.-A. Smith, Combining dynamical and statistical ensembles. Tellus 55A(1), 16–30 (2003)CrossRefGoogle Scholar
  34. R. Schefzik, T.L. Thorarinsdottir, T. Gneiting, Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci. 28(4), 616–640 (2013)CrossRefGoogle Scholar
  35. M. Scheuerer, Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Q. J. R. Meteorol. Soc. 140(680), 1086–1096 (2014)CrossRefGoogle Scholar
  36. M.J. Schmeits, K.J. Kok, A comparison between raw ensemble output, (modified) Bayesian Model Averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Weather Rev. 138, 4199–4211 (2010)CrossRefGoogle Scholar
  37. J.M. Sloughter, A.E. Raftery, T. Gneiting, Probabilistic quantitative precipitation forecasting using Bayesian Model Averaging. Mon. Weather Rev. 135, 3209–3220 (2007)CrossRefGoogle Scholar
  38. S.J. van Andel, A.H. Weerts, J. Schaake, K. Bogner, Post-processing hydrological ensemble predictions intercomparison experiment. Hydrol. Process. 27(1), 158–161 (2012)CrossRefGoogle Scholar
  39. H.M. Van Den Dool, Searching for analogues, how long must we wait? Tellus A 46, 314–324 (1994)CrossRefGoogle Scholar
  40. B. Van Schaeybroeck, S. Vannitsem, Post-processing through linear regression. Nonlinear Process. Geophys. 18, 147–160 (2011)CrossRefGoogle Scholar
  41. B. Van Schaeybroeck, S. Vannitsem, Ensemble post-processing using member-by-member approaches: theoretical aspects. Q. J. R. Meteorol. Soc. 141(688), 807–818 Part: A Published: APR 2015. Early View (2014)Google Scholar
  42. S. Vannitsem, A unified linear model output statistics scheme for both deterministic and ensemble forecasts. Q. J. R. Meteorol. Soc. 135(644), 1801–1815 (2009)CrossRefGoogle Scholar
  43. J.S. Verkade, J.D. Brown, P. Reggiani, A.H. Weerts, Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. Mon. Weather Rev. 135(6), 2379–2390 (2007)CrossRefGoogle Scholar
  44. M.-P. Wand, M.-C. Jones, Kernel Smoothing (Chapman and Hall, London, 1995)CrossRefGoogle Scholar
  45. A.H. Weerts, H.C. Winsemius, J.S. Verkade, Estimation of predictive hydrological uncertainty using quantile regression: example from the national flood forecasting system (England and Wales). Hydrol. Earth Syst. Sci. 15, 255–265 (2011)CrossRefGoogle Scholar
  46. D.S. Wilks, Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteorol. Appl. 13(3), 243–256 (2006)CrossRefGoogle Scholar
  47. D.S. Wilks, Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteorol. Appl. 16(3), 361–368 (2009)CrossRefGoogle Scholar
  48. D.S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic/Elsevier, 2011)Google Scholar
  49. D.S. Wilks, T.M. Hamill, Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev. 135(6), 2379–2390 (2007)CrossRefGoogle Scholar
  50. R.M. Williams, C.A.T. Ferro, F. Kwasniok, A comparison of ensemble post-processing methods for extreme events. Q. J. R. Meteorol. Soc. 140, 1112–1120 (2014)CrossRefGoogle Scholar
  51. L.J. Wilson, S. Beauregard, A.E. Raftery, R. Verret, Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian Model Averaging (with discussion). Mon. Weather Rev. 135, 1364–1385 (2007). Discussion pages 4226–4236CrossRefGoogle Scholar
  52. A.W. Wood, Dynamical-statistical approaches for hydrological ensemble prediction, in Science Symposium Proceedings, Melbourne, Australia, 2012 (CSIRO: Water for a Healthy Country National Research Flagship, 2012)Google Scholar
  53. A.W. Wood, J.C. Schaake, Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeorol. 9, 132–148 (2008)CrossRefGoogle Scholar
  54. L. Zhao, Q. Duan, J. Schaake, A. Ye, J. Xia, A hydrologic post-processor for ensemble streamflow predictions. Adv. Geosci. 29, 51–59 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marie-Amélie Boucher
    • 1
    Email author
  • Emmanuel Roulin
    • 2
  • Vincent Fortin
    • 3
  1. 1.Civil Engineering DepartmentUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut Royal Météorologique de BelgiqueBruxellesBelgium
  3. 3.Environment and Climate Change CanadaDorvalCanada

Section editors and affiliations

  • Andy Wood
    • 1
  • Thomas Hopson
    • 2
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Research Applications Laboratory, National Center for Atmospheric ResearchColoradoUSA

Personalised recommendations