Probabilistic Shipping Forecast

  • Dennis MeißnerEmail author
  • Bastian Klein
Reference work entry


Inland waterway transport is an important even though often neglected economic sector relying on hydrological forecasts in order to increase its operating efficiency. Besides river ice and floods, low stream flow is the main hydrological impact for shipping along the European inland waterways as it sustainably affects the load capacity of vessels and thus transportation costs several times a year. For this reason, inland waterway transport benefits from water-level forecasts in order to take preventive action and adjust the draft, especially during stream flow droughts.

Although most navigation-related water-level forecasts are still deterministic, the waterway transport sector is a well-suited customer of probabilistic forecast products for several reasons: The number of decisions to be taken is quite high, especially in comparison to the operation of protection measures against rare flood events. Furthermore, in waterway transport, the user’s costs and losses associated with possible forecast-based decisions are well known and monetary valuation of losses, like nonoperation times or additional effort due to lighterage, is more feasible as it is for example with regard to human lives or environmental pollution. Last but not least shipping is an inhomogeneous stakeholder as different vessel types and routes cause different cost structures and sensitivities due to navigation conditions. Selecting one “best-guess” forecast, being optimal for all users, is impossible.

In this chapter, hydrological forecasts as one component to support inland waterway transport are presented and the added value of probabilistic forecasts is demonstrated applying a simulation based cost model for the River Rhine, being one of the world’s most frequented inland waterways.


Cost structure model Flood Inland waterway Inland waterway transport Low stream flow Navigation River ice River Information Service (RIS) River Rhine Seasonal forecast Shipping Traffic Water-level forecast 


  1. G.D. Ashton, River and Lake Ice Engineering (Water Resources Publications LLC, Littleton, 1986)Google Scholar
  2. S. Beltaos, River ice jams (Water Resources Publications LLC, Littleton, 1995)Google Scholar
  3. J. Belz, N. Busch, M. Hammer, M. Hatz, P. Krahe, D. Meißner, A. Becker, U. Böhm, A. Gratzki, F.J. Löpmeier, G. Malitz, T. Schmidt, Das Juni-Hochwasser des Jahres 2013 an den Bundeswasserstraßen – Ursachen und Verlauf, Einordnung und fachliche Herausforderungen. Korrepondenz Wasserwirtschaft (2013). Scholar
  4. F. Bruinsma, P. Koster, B. Holtmann, E. van Heumen, M. Beuthe, N. Urbain, B. Jourquin, B. Ubbels, M. Quispel, Consequences of climate change for inland waterway transport. Deliverable 3.3 Consequences of climate change for inland waterway transport (2012). (last access: 11/07/2016)
  5. D. Carstensen, Eis im Wasserbau – Theorie, Erscheinungen, Bemessungsgrößen. Dresdner Wasserbauliche Mitteilungen, vol. 37 (TU Dresden, Dresden, 2008). ISBN 978-3-86780-099-0Google Scholar
  6. Donaukommission, Lokale Schifffahrtsregeln auf der Donau (Sonderbestimmungen) (Budapest, 2005) (last access: 11/07/2016)
  7. European Union, EU transport in figures – statistical pocketbook 2013 (2013).
  8. B. Holtmann, W, Bialonski, Einfluss von Extremwasserständen auf die Kostenstruktur und Wettbewerbsfähigkeit der Binnenschifffahrt, ed. by BMVBS Tagungsband KLIWAS – Auswirkungen des Klimawandels auf Wasserstraßen und Schifffahrt in Deutschland. 1. Statuskonferenz am 18. und 19. März 2009 (Bonn, 2009)Google Scholar
  9. International navigation association, Vessel traffic and transport management in the inland waterways and modern information systems. Report of Working Group 24 – INCOM (2002). ISBN 2-87223-124-2Google Scholar
  10. O. Jonkeren, P. Rietveld, J. van Ommeren, Climate change and inland waterway transport: welfare effects of low water levels on the river Rhine. J. Transp. Econ. Policy 41(3), 387–411 (2007)Google Scholar
  11. R.W. Katz, A.H. Murphy, Economic value of weather and climate forecasts (Cambridge University Press, Cambridge, 1997). ISBN 9780521435710CrossRefGoogle Scholar
  12. H. Moser, J. Cullmann, S. Kofalk, S. Mai, E. Nilson, S. Rösner, P. Becker, A. Gratzki, K.J Schreiber, in An integrated climate service for the transboundary river basin and coastal management of Germany, ed. by WMO. Climate ExChange, (2012), ISBN 978-0-9568561-4-2Google Scholar
  13. E. Nilson, I. Lingemann, B. Klein, P. Krahe, Impact of hydrological change on navigation conditions. Deliverable 1.4 ECCONET – Effects of climate change on the inland waterway transport network (2012)Google Scholar
  14. M.S. Petersen, R. Enei, C.O. Hansen, E. Larrea, O. Obisco, C. Sessa, P.M. Timms, A. Ulied, Report on Transport Scenarios with a 20 and 40 year Horizon, Final report TRANSvisions project, (Copenhagen/Denmark, 2009)Google Scholar
  15. Internationale Kommission für die Hydrologie des Rheingebietes, Eine Hochwasserperiode im Rheingebiet – Extremereignisse zwischen Dez. 1993 and Febr. 1995 (1999). ISBN 90-70980-28-2Google Scholar
  16. E. Roulin, Skill and relative economic value of medium-range hydrological ensemble predictions. Hydrol. Earth Syst. Sci. 11, 725–737 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.German Federal Institute of Hydrology (BfG)KoblenzGermany
  2. 2.Department Water Balance, Forecasting and PredictionsFederal Institute of Hydrology (BfG)KoblenzGermany

Personalised recommendations