Verification of Short-Range Hydrological Forecasts

  • Katharina Liechti
  • Massimiliano Zappa
Reference work entry


For the mitigation of floods and flashfloods, operational nowcast and forecast systems are crucial. This chapter provides practical illustrations of the verification of hydrological ensemble prediction systems with a temporal horizon of up to 5 days.

Section 2 shows the application of two ensemble approaches for discharge nowcasts. The results show that both ensemble approaches have added value compared to deterministic nowcasts.

Section 3 presents the evaluation of an operational flood forecasting system. The system is run with the two deterministic COSMO-2 and COSMO-7 weather forecasts and with the probabilistic COSMO-LEPS weather forecast. The evaluation with several skill scores suggests that decisions that need to be taken with a lead time of 1 day and more should be based on the ensemble forecast.

Ensemble forecasts can be difficult to interpret. Section 4 provides a helpful tool for the estimation of flood peak timing and magnitude based on probabilistic forecasts.


Real-time experiment Hydrological forecast Short range Skill score Forecast verification 


  1. N. Addor, S. Jaun, M. Zappa, An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. Hydrol. Earth Syst. Sci. 15(7), 2327–2347 (2011)Google Scholar
  2. N. Andres, G. Lieberherr, I.V. Sideris, F. Jordan, M. Zappa, From calibration to real-time operations: an assessment of three precipitation benchmarks for a Swiss river system. Meteorol. Appl. 23(3), 448–461 (2016)Google Scholar
  3. A. Badoux et al., IFKIS-Hydro Sihl: Beratung und Alarmorganisation während des Baus der Durchmesserlinie beim Hauptbahnhof Zürich. Wasser Energ. Luft 102(4), 309–320 (2010)Google Scholar
  4. K. Beven, J. Freer, Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 249(1–4), 11–29 (2001)Google Scholar
  5. K. Bogner, K. Liechti, M. Zappa, Post-processing of stream flows in Switzerland with an emphasis on low flows and floods. Water 8(4), 115 (2016)Google Scholar
  6. J.D. Brown, J. Demargne, D.-J. Seo, Y. Liu, The Ensemble Verification System (EVS): a software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Model. Software 25(7), 854–872 (2010)Google Scholar
  7. B. Efron, 1977 Rietz lecture – bootstrap methods – another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)Google Scholar
  8. F. Fundel, A. Walser, M.A. Liniger, C. Frei, C. Appenzeller, Calibrated precipitation forecasts for a limited area ensemble forecast system using reforecasts. Mon. Weather Rev. 138(1), 176–189 (2010)Google Scholar
  9. F. Galton, The wisdom of crowds. Nature 75(1949), 450–451 (1907)Google Scholar
  10. U. Germann, M. Berenguer, D. Sempere-Torres, M. Zappa, REAL – Ensemble radar precipitation estimation for hydrology in a mountainous region. Q. J. Roy. Meteorol. Soc. 135(639), 445–456 (2009)Google Scholar
  11. S. Hemri, F. Fundel, M. Zappa, Simultaneous calibration of ensemble river flow predictions over an entire range of lead times. Water Resour. Res. 49(10), 6744–6755 (2013)Google Scholar
  12. S. Jaun, B. Ahrens, A. Walser, T. Ewen, C. Schär, A probabilistic view on the August 2005 floods in the upper Rhine catchment. Nat. Hazards Earth Syst. Sci. 8(2), 281–291 (2008)Google Scholar
  13. G. Kuczera, E. Parent, Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J. Hydrol. 211(1–4), 69–85 (1998)Google Scholar
  14. R. Lamb, Calibration of a conceptual rainfall-runoff model for flood frequency estimation by continuous simulation. Water Resour. Res. 35(10), 3103–3114 (1999)Google Scholar
  15. K. Liechti, L. Panziera, U. Germann, M. Zappa, The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci. 17, 3853–3869 (2013a)Google Scholar
  16. K. Liechti, M. Zappa, F. Fundel, U. Germann, Probabilistic evaluation of ensemble discharge nowcasts in two nested Alpine basins prone to flash floods. Hydrol. Process. 27(1), 5–17 (2013b)Google Scholar
  17. P.V. Mandapaka, U. Germann, L. Panziera, A. Hering, Can Lagrangian extrapolation of radar fields be used for precipitation nowcasting over complex Alpine orography? Weather Forecast. 27(1), 28–49 (2012)Google Scholar
  18. C. Marsigli, F. Boccanera, A. Montani, T. Paccagnella, The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification. Nonlinear Processes Geophys. 12(4), 527–536 (2005)Google Scholar
  19. J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models (1), a discussion of principles. J. Hydrol. 10, 282–290 (1970)Google Scholar
  20. L. Panziera, U. Germann, The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. Q. J. Roy. Meteorol. Soc. 136(646), 222–238 (2010)Google Scholar
  21. D. Viviroli, H. Mittelbach, J. Gurtz, R. Weingartner, Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter regionalisation and flood estimation results. J. Hydrol. 377(1–2), 208–225 (2009a)Google Scholar
  22. D. Viviroli, M. Zappa, J. Gurtz, R. Weingartner, An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ. Model. Software 24(10), 1209–1222 (2009b)Google Scholar
  23. D. Viviroli, M. Zappa, J. Schwanbeck, J. Gurtz, R. Weingartner, Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part I: Modelling framework and calibration results. J. Hydrol. 377(1–2), 191–207 (2009c)Google Scholar
  24. J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, B.A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09 (2008)Google Scholar
  25. D.S. Wilks, Statistical Methods in the Atmospheric Sciences (Elsevier, Amsterdam, 2006), p. 627Google Scholar
  26. M. Zappa et al., IFKIS-Hydro Sihl: Ein operationelles Hochwasservorhersagesystem für die Stadt Zürich und das Sihltal. Wasser Energ. Luft 102(3), 238–248 (2010)Google Scholar
  27. M. Zappa, S. Jaun, U. Germann, A. Walser, F. Fundel, Superposition of three sources of uncertainties in operational flood forecasting chains. Atmos. Res. 100(2–3), 246–262 (2011)Google Scholar
  28. M. Zappa, F. Fundel, S. Jaun, A ‘Peak-Box’ approach for supporting interpretation and verification of operational ensemble peak-flow forecasts. Hydrol. Process. 27(1), 117–131 (2013)Google Scholar
  29. M. Zappa et al., Crash tests for forward-looking flood control in the city of Zürich (Switzerland). Proc. IAHS 370, 235–242 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations