Advertisement

Uncertainty Quantification of Complex System Models: Bayesian Analysis

  • Jasper A. VrugtEmail author
  • Elias C. Massoud
Reference work entry

Abstract

This chapter summarizes the main elements of Bayesian probability theory to help reconcile dynamic environmental system models with observations, including prediction in space (interpolation), prediction in time (forecasting), assimilation of data, and inference of the model parameters. Special attention is given to the treatment of parameter uncertainty (first-order approximations and Bayesian intervals), the prior distribution, the formulation of the likelihood function (using first-principles), the marginal likelihood, and sampling techniques used to estimate the posterior target distribution. This includes rejection sampling, importance sampling, and recent developments in Markov chain Monte Carlo simulation to sample efficiently complex and/or high-dimensional target distributions, including limits of acceptability. We illustrate the application of Bayes’ theorem and inference using three illustrative examples involving the flow and storage of water in the surface and subsurface. At least some level of calibration of these models is required to match their output with observations of system behavior and response. Algorithmic recipes of the different methods are provided to simplify implementation and use of Bayesian analysis.

Keywords

Hypothesis testing Bayesian analysis Prior distribution Likelihood function Posterior distribution Monte Carlo sampling Markov chain Monte Carlo simulation Data assimilation Hydrologic modeling 

Notes

Acknowledgments

The first author is supported by funding from the UC-Lab Fees Research Program Award 237285. The material presented in this chapter is part of the first author’s graduate course on “Merging Models and Data” (CEE-290) taught at the University of California, Irvine. An animated presentation of this material can be found online at https://www.youtube.com/watch?v=bhA9vtiHxZ0. The DREAM family of algorithms discussed in this chapter are implemented in DREAM Suite, an easy to use, plug-and-play, Windows program. This program can be found online at www.dreamsuite.eu and simplifies considerably Bayesian analysis and its application to uncertainty quantification of mathematical models.

References

  1. B.C. Bates, E.P. Campbell, A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour. Res. 37(4), 937–947 (2001)CrossRefGoogle Scholar
  2. T. Bayes, R. Price, An essay towards solving a problem in the doctrine of chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Philos. Trans. R. Soc. Lond. 53(0), 370–418 (1763).  https://doi.org/10.1098/rstl.1763.0053CrossRefGoogle Scholar
  3. J.O. Berger, Statistical Decision Theory and Bayesian Analysis (Springer, New York, 1985)CrossRefGoogle Scholar
  4. J.O. Berger, J.M. Bernardo, D. Sun, The formal definition of reference priors. Ann. Stat. 37(2), 905–938 (2009).  https://doi.org/10.1214/07-AOS587CrossRefGoogle Scholar
  5. J.M. Bernardo, Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat. Soc. Ser. B 41, 113–147 (1979)Google Scholar
  6. K. Beven, A manifesto for the equifinality thesis. J. Hydrol. 320(1), 18–36 (2006)CrossRefGoogle Scholar
  7. K.J. Beven, A.M. Binley, The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992)CrossRefGoogle Scholar
  8. K.J. Beven, A.M. Binley, GLUE: 20 years on. Hydrol. Process. 28, 5879–5918 (2014).  https://doi.org/10.1002/hyp.10082CrossRefGoogle Scholar
  9. S. Blazkova, K.J. Beven, A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour. Res. 45, W00B16 (2009).  https://doi.org/10.1029/2007WR006726CrossRefGoogle Scholar
  10. G.E.P. Box, G.C. Tiao, Bayesian Inference in Statistical Analysis (Wiley, New York, 1992), 588 ppCrossRefGoogle Scholar
  11. S.P. Brooks, A. Gelman, General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998)Google Scholar
  12. M. Clark, D. Kavetski, F. Fenicia, Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 47(9), 1–16 (2011).  https://doi.org/10.1029/2010WR009827CrossRefGoogle Scholar
  13. S. Dean, J.E. Freer, K.J. Beven, A.J. Wade, D. Butterfield, Uncertainty assessment of a process-based integrated catchment model of phosphorus (INCA-P). Stoch. Env. Res. Risk A. 23, 991–1010 (2009).  https://doi.org/10.1007/s00477-008-0273-zCrossRefGoogle Scholar
  14. Q. Duan, S. Sorooshian, V. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015–1031 (1992)CrossRefGoogle Scholar
  15. G. Evin, D. Kavetski, M. Thyer, G. Kuczera, Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration. Water Resour. Res. 49, 4518–4524 (2013).  https://doi.org/10.1002/wrcr.20284CrossRefGoogle Scholar
  16. C. Fernandez, M.J.F. Steel, On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 93, 359–371 (1998)Google Scholar
  17. J. Freer, H. McMillan, J.J. McDonnell, K.J. Beven, Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. J. Hydrol. 291, 254–277 (2004)CrossRefGoogle Scholar
  18. A.G. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)CrossRefGoogle Scholar
  19. A.G. Gelman, G.O. Roberts, W.R. Gilks, Bayesian Statistics (Oxford University Press, Oxford, 1996), pp. 599–608Google Scholar
  20. J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in Bayesian Statistics 4, ed. by J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Oxford Oxford University Press, 1992), pp. 169–193Google Scholar
  21. W.R. Gilks, G.O. Roberts, Strategies for improving MCMC, in Markov Chain Monte Carlo in Practice, ed. by W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Chapman & Hall, London, 1996), pp. 89–114Google Scholar
  22. W.R. Gilks, G.O. Roberts, E.I. George, Adaptive direction sampling. Underst. Stat. 43, 179–189 (1994)Google Scholar
  23. H.V. Gupta, T. Wagener, Y. Liu, Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Process. 22(18), 3802–3813 (2008)CrossRefGoogle Scholar
  24. H. Haario, E. Saksman, J. Tamminen, Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 14, 375–395 (1999)CrossRefGoogle Scholar
  25. H. Haario, E. Saksman, J. Tamminen, An adaptive Metropolis algorithm. Bernoulli 7, 223–242 (2001)CrossRefGoogle Scholar
  26. H. Haario, E. Saksman, J. Tamminen, Componentwise adaptation for high dimensional MCMC. Stat. Comput. 20, 265–274 (2005)CrossRefGoogle Scholar
  27. H. Haario, M. Laine, A. Mira, E. Saksman, DRAM: Efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006)CrossRefGoogle Scholar
  28. H. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)CrossRefGoogle Scholar
  29. T.J. Heimovaara, W. Bouten, A computer-controlled 36-channel time domain reflectometry system for monitoring soil water contents. Water Resour. Res. 26, 2311–2316 (1990).  https://doi.org/10.1029/WR026i010p02311CrossRefGoogle Scholar
  30. J. Hoeting, D. Madigan, A. Raftery, C. Volinsky, Bayesian model averaging: A tutorial. Stat. Sci. 14(4), 382–417 (1999)CrossRefGoogle Scholar
  31. H. Jeffreys, An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 186(1007), 453–461 (1946).  https://doi.org/10.1098/rspa.1946.0056CrossRefGoogle Scholar
  32. D. Kavetski, G. Kuczera, S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 42(3), W03407 (2006a).  https://doi.org/10.1029/2005WR004368CrossRefGoogle Scholar
  33. D. Kavetski, G. Kuczera, S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour. Res. 42(3), W03408 (2006b).  https://doi.org/10.1029/2005WR004376CrossRefGoogle Scholar
  34. K. Keesman, Membership-set estimation using random scanning and principal component analysis. Math. Comput. Simul. 32, 535–543 (1990)CrossRefGoogle Scholar
  35. T. Krueger, J.N. Quinton, J. Freer, C.J. Macleod, G.S. Bilotta, R.E. Brazier, P.M. Haygarth, Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer. J. Environ. Qual. 38(3), 1137–1148 (2009)CrossRefGoogle Scholar
  36. G. Kuczera, Improved parameter inference in catchment models, 1. Evaluating parameter uncertainty. Water Resour. Res. 19(5), 1151–1162 (1983).  https://doi.org/10.1029/WR019i005p01151CrossRefGoogle Scholar
  37. G. Kuczera, D. Kavetski, S. Franks, M. Thyer, Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. J. Hydrol. 331(1), 161–177 (2006)CrossRefGoogle Scholar
  38. E. Laloy, J.A. Vrugt, High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour. Res. 48, W01526 (2012).  https://doi.org/10.1029/2011WR010608CrossRefGoogle Scholar
  39. J.S. Liu, F. Liang, W.H. Wong, The multiple-try method and local optimization in metropolis sampling. J. Am. Stat. Assoc. 95(449), 121–134 (2000).  https://doi.org/10.2307/2669532CrossRefGoogle Scholar
  40. Y. Liu, J.E. Freer, K.J. Beven, P. Matgen, Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. J. Hydrol. 367, 93–103 (2009).  https://doi.org/10.1016/j.jhydrol.2009.01.016CrossRefGoogle Scholar
  41. H. McMillan, J. Freer, F. Pappenberger, T. Krueger, M. Clark, Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions. Hydrol. Process. 24(10), 1270–1284 (2010)Google Scholar
  42. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  43. J.E. Nash, A unit hydrograph study with particular reference to British catchments. Proc. Inst. Civ. Eng. 17, 249–282 (1960)Google Scholar
  44. J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol. 10(3), 282–290 (1970)CrossRefGoogle Scholar
  45. T. Page, K.J. Beven, J. Freer, A. Jenkins, Investigating the uncertaintyin predicting responses to atmospheric deposition using the model of acidification of groundwater in catchments (MAGIC) within a generalised likelihood uncertainty estimation (GLUE) framework. Water Soil Air Pollut. 142, 71–94 (2003)CrossRefGoogle Scholar
  46. T. Page, K.J. Beven, D. Whyatt, Predictive capability in estimating changes in water quality: Long-term responses to atmospheric deposition. Water Soil Air Pollut. 151, 215–244 (2004)CrossRefGoogle Scholar
  47. T. Page, K.J. Beven, J. Freer, Modelling the chloride signal at the Plynlimon catchments, Wales using a modified dynamic TOPMODEL. Hydrol. Process. 21, 292–307 (2007)CrossRefGoogle Scholar
  48. F. Pappenberger, K. Beven, M. Horritt, S. Blazkova, Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 302, 46–69 (2005)CrossRefGoogle Scholar
  49. F. Pappenberger, K. Frodsham, K.J. Beven, R. Romanovicz, P. Matgen, Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrol. Earth Syst. Sci. 11(2), 739–752 (2007)CrossRefGoogle Scholar
  50. K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution, A Practical Approach to Global Optimization (Springer, Berlin, 2005)Google Scholar
  51. V.C. Radu, J. Rosenthal, C. Yang, Learn from the thy neighbor: Parallel-chain and regional adaptive MCMC. J. Am. Stat. Assoc. 104(488), 1454–1466 (2009)CrossRefGoogle Scholar
  52. A.E. Raftery, S.M. Lewis, One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Stat. Sci. 7, 493–497 (1992)CrossRefGoogle Scholar
  53. A.E. Raftery, T. Gneiting, F. Balabdaoui, M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005)CrossRefGoogle Scholar
  54. P. Reichert, J. Mieleitner, Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, timeâĂŘdependent parameters. Water Resour. Res. 45, W10402 (2009).  https://doi.org/10.1029/2009WR007814CrossRefGoogle Scholar
  55. B. Renard, D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, S.W. Franks, Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res. 47(11), W11516 (2011).  https://doi.org/10.1029/2011WR010643CrossRefGoogle Scholar
  56. C.P. Roberts, G. Casella, Monte Carlo Statistical Methods, 2nd edn. (Springer, New York, 2004)CrossRefGoogle Scholar
  57. G.O. Roberts, W.R. Gilks, Convergence of adaptive direction sampling. J. Multivar. Anal. 49, 287–298 (1994)CrossRefGoogle Scholar
  58. G.O. Roberts, J.S. Rosenthal, Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44, 458–475 (2007)CrossRefGoogle Scholar
  59. G.O. Roberts, A. Gelman, W.R. Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120 (1997)CrossRefGoogle Scholar
  60. M. Sadegh, J.A. Vrugt, Approximate Bayesian computation using Markov chain Monte Carlo simulation: DREAM(ABC). Water Resour. Res. 50 (2014).  https://doi.org/10.1002/2014WR015386CrossRefGoogle Scholar
  61. M. Sadegh, J.A. Vrugt, C. Xu, E. Volpi, The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM(ABC). Water Resour. Res. 51, 9207–9231 (2015).  https://doi.org/10.1002/2014WR016805CrossRefGoogle Scholar
  62. M.G. Schaap, F.J. Leij, M.T. van Genuchten, Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62, 847–855 (1998)CrossRefGoogle Scholar
  63. M.G. Schaap, F.J. Leij, M.T. van Genuchten, Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 (2001)CrossRefGoogle Scholar
  64. B. Scharnagl, J.A. Vrugt, H. Vereecken, M. Herbst, Bayesian inverse modeling of soil water dynamics at the field scale: Using prior information about the soil hydraulic properties. Hydrol. Earth Syst. Sci. 15, 3043–3059 (2011).  https://doi.org/10.5194/hess-15-3043-2011CrossRefGoogle Scholar
  65. B. Scharnagl, S.C. Iden, W. Durner, H. Vereecken, M. Herbst, Inverse modelling of in situ soil water dynamics: Accounting for heteroscedastic, autocorrelated, and non-Gaussian distributed residuals. Hydrol. Earth Syst. Sci. Discuss. 12, 2155–2199 (2015)CrossRefGoogle Scholar
  66. A. Schöniger, T. Wöhling, L. Samaniego, W. Nowak, Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence. Water Resour. Res. 50(12), W10530, 9484–9513 (2014).  https://doi.org/10.1002/2014WR016062CrossRefGoogle Scholar
  67. G. Schoups, J.A. Vrugt, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors. Water Resour. Res. 46, W10531 (2010).  https://doi.org/10.1029/2009WR008933CrossRefGoogle Scholar
  68. J. Šimůnek, M. Šejna, H. Saito, M. Sakai, M.T. van Genuchten, The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media (Version 4.0) (Department of Environmental Sciences, University of California Riverside, Riverside, 2008)Google Scholar
  69. T. Smith, A. Sharma, L. Marshall, R. Mehrotra, S. Sisson, Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments. Water Resour. Res. 46, W12551 (2010).  https://doi.org/10.1029/2010WR009514CrossRefGoogle Scholar
  70. S. Sorooshian, J.A. Dracup, Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resour. Res. 16(2), 430–442 (1980)CrossRefGoogle Scholar
  71. S.M. Stigler, Who discovered Bayes’s theorem? Am. Stat. 37(4 Part 1), 290–296 (1983)CrossRefGoogle Scholar
  72. R. Storn, K. Price, A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)CrossRefGoogle Scholar
  73. C.J.F. ter Braak, A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006)CrossRefGoogle Scholar
  74. C.J.F. ter Braak, J.A. Vrugt, Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput. 18(4), 435–446 (2008).  https://doi.org/10.1007/s11222-008-9104-9CrossRefGoogle Scholar
  75. M. Thiemann, M. Trosset, H. Gupta, S. Sorooshian, Bayesian recursive parameter estimation for hydrologic models. Water Resour. Res. 37(10), 2521–2535 (2001)CrossRefGoogle Scholar
  76. G.C. Topp, J.L. Davis, A.P. Annan, Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16, 574–582 (1980).  https://doi.org/10.1029/WR016i003p00574CrossRefGoogle Scholar
  77. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980).  https://doi.org/10.2136/sssaj1980.03615995004400050002xCrossRefGoogle Scholar
  78. E. Volpi, G. Schoups, G. Firmani, J.A. Vrugt, Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling. Water Resour. Res. 53, 6133–6158 (2017).  https://doi.org/10.1002/2016WR020167CrossRefGoogle Scholar
  79. J.A. Vrugt, Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Model. Softw. 75, 273–316 (2016).  https://doi.org/10.1016/j.envsoft.2015.08.013CrossRefGoogle Scholar
  80. J.A. Vrugt, K.J. Beven, Embracing equifinality with efficiency: Limits of acceptability sampling using the DREAM(LOA) algorithm. J. Hydrol. 559, 954–971 (2018).  https://doi.org/10.1016/j.jhydrol.2018.02.026, In PressCrossRefGoogle Scholar
  81. J.A. Vrugt, E. Laloy, Reply to comment by Chu et al. on High-dimensional posterior exploration of hydrologic models using multiple-try DREAMtext(ZS) and high-performance computing. Water Resour. Res. 50, 2781–2786 (2014).  https://doi.org/10.1002/2013WR014425CrossRefGoogle Scholar
  82. J.A. Vrugt, B.A. Robinson, Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res. 43, W01411 (2007).  https://doi.org/10.1029/2005WR004838CrossRefGoogle Scholar
  83. J.A. Vrugt, M. Sadegh, Toward diagnostic model calibration and evaluation: Approximate Bayesian computation. Water Resour. Res. 49 (2013).  https://doi.org/10.1002/wrcr.20354CrossRefGoogle Scholar
  84. J.A. Vrugt, C.J.F. ter Braak, DREAM(D): An adaptive Markov chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrol. Earth Syst. Sci. 15, 3701–3713 (2011).  https://doi.org/10.5194/hess-15-3701-2011CrossRefGoogle Scholar
  85. J.A. Vrugt, H.V. Gupta, W. Bouten, S. Sorooshian, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 39(8), 1201 (2003).  https://doi.org/10.1029/2002WR001642CrossRefGoogle Scholar
  86. J.A. Vrugt, C.G.H. Diks, W. Bouten, H.V. Gupta, J.M. Verstraten, Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res. 41(1), W01017 (2005).  https://doi.org/10.1029/2004WR003059CrossRefGoogle Scholar
  87. J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, B.A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09 (2008).  https://doi.org/10.1029/2007WR006720CrossRefGoogle Scholar
  88. J.A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, D. Higdon, B.A. Robinson, J.M. Hyman, Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul 10(3), 273–290 (2009)CrossRefGoogle Scholar
  89. L. Wasserman, Bayesian model selection and model averaging. J. Math. Psychol. 44(1), 92–107 (2000).  https://doi.org/10.1006/jmps.1999.1278CrossRefGoogle Scholar
  90. I.K. Westerberg, J.-L. Guerrero, P.M. Younger, K.J. Beven, J. Seibert, S. Halldin, J.E. Freer, C.-Y. Xu, Calibration of hydrological models using flow-duration curves. Hydrol. Earth Syst. Sci. 15, 2205–2227 (2011).  https://doi.org/10.5194/hess-15-2205-2011CrossRefGoogle Scholar
  91. J. Yang, P. Reichert, K.C. Abbaspour, Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland). Water Resour. Res. 43, W10401 (2007).  https://doi.org/10.1029/2006WR005497CrossRefGoogle Scholar
  92. M. Ye, P. Meyer, S.P. Neuman, On model selection criteria in multimodel analysis. Water Resour. Res. 44, 1–12 (2008).  https://doi.org/10.1029/2008WR006803CrossRefGoogle Scholar
  93. S.L. Zabell, The rule of succession. Erkenntnis 31(2–3), 283–321 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineUSA
  2. 2.Department of Earth System ScienceUniversity of California IrvineIrvineUSA

Section editors and affiliations

  • Dmitri Kavetski
    • 1
  • Kuolin Hsu
    • 2
  • Yuqiong Liu
    • 3
  1. 1.School of Civil, Environmental and Mining Engineering, University of AdelaideAdelaideAustralia
  2. 2.Civil & Environmental Engineering, The Henry Samueli School of Engineering, University of CaliforniaIrvineUSA
  3. 3.NASA Goddard Space Flight CenterWashington D.C.USA

Personalised recommendations