Black-Box Hydrological Models

  • Chong-Yu Xu
  • Lihua Xiong
  • Vijay P. SinghEmail author
Reference work entry


This chapter discusses different types of black-box hydrological models that are based on input-output relationships rather than physical principles. They include antecedent precipitation index (API) models, regression models, time series models, artificial neural network (ANN) models, fuzzy logic models, and frequency analysis models. The purpose of this chapter is neither to provide a complete discussion of the theory of hydrological systems nor to offer a complete coverage of the studies published in the literature. Rather, the chapter is focused on presenting general theories and methods of different types of black-box models, basic model forms, and related applications in hydrology and water resources engineering.


Black-box Gray-box White-box models Flood forecasting Hydrology 



We are indebted to Yixing Yin, Yukun Hou, Qiang Zeng, and Xin-e Tao for their help in preparation of this chapter with proofreading and in supplying references, drawing figures, rewriting parts of the text, etc. We are also thankful to the two anonymous reviewers whose comments improved this chapter.


  1. A.J. Abebe, D.P. Solomatine, R.G.W. Venneker, Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrol. Sci. J. 45(3), 425–436 (2000)CrossRefGoogle Scholar
  2. R.J. Abrahart, L. See, Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14, 2157–2172 (2000)CrossRefGoogle Scholar
  3. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J. Environ. Health Sci. Eng. 12, 40 (2014.)
  4. J. Adamowski, H.F. Chan, S.O. Prasher, B. Ozga-Zielinski, A. Sliusarieva, Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 48(1) (2012).
  5. A. Afshar, M.A. Mariño, M. Ebtehaj, J. Moosavi, Rule-based fuzzy system for assessing groundwater vulnerability. J. Environ. Eng. 133(5), 532–540 (2007)CrossRefGoogle Scholar
  6. S. Ahmad, S.P. Simonovic, An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol. 315, 236–251 (2005)CrossRefGoogle Scholar
  7. S. Ahmad, I.H. Khan, B.P. Parida, Performance of stochastic approaches for forecasting river water quality. Water Res. 35(18), 4261–4266 (2001)CrossRefGoogle Scholar
  8. S. Ali, N.C. Ghosh, R. Singh, Rainfall-runoff simulation using a normalized antecedent precipitation index. Hydrol. Sci. J. 55(2), 266–274 (2010)CrossRefGoogle Scholar
  9. M. Alp, H.K. Cigizoglu, Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ. Model Softw. 22, 2–13 (2007)CrossRefGoogle Scholar
  10. A. Aziz, R. Abd, K.F.V. Wong, A neural-network approach to the determination of aquifer parameters. Ground Water 30(2), 164–166 (1992)CrossRefGoogle Scholar
  11. K. Aziz, A. Rahman, G. Fang, S. Shrestha, Application of artificial neural networks in regional flood frequency analysis: a case study for Australia. Stoch. Env. Res. Risk A. 28(3), 541–554 (2014)CrossRefGoogle Scholar
  12. R.T. Bailite, Predictions from ARMAX models. J. Econ. 12, 365–374 (1980)CrossRefGoogle Scholar
  13. A. Bárdossy, M. Disse, Fuzzy rule-based models for infiltration. Water Resour. Res. 29(2), 373–382 (1993)CrossRefGoogle Scholar
  14. A. Bárdossy, A. Bronstert, B. Merz, 1-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach. Adv. Water Resour. 18(4), 237–251 (1995)CrossRefGoogle Scholar
  15. J.J. Beauchamp, Comparison of regression and time-series methods for synthesizing missing streamflow records. Water Resour. Bull. 25, 961–975 (1989)CrossRefGoogle Scholar
  16. M.A. Benson, Factors influencing the occurrence of floods in a humid region of diverse terrain. U.S. Geol. Surv., Water-Supply Pap., 1580-B, 64 pp. (1962)Google Scholar
  17. R.B. Billings, D.E. Agthe, State-space versus multiple regression for forecasting urban water demand. J. Water Resour. Plann. Manag. 124(2), 113 (1998)CrossRefGoogle Scholar
  18. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31(3), 307–327 (1986)CrossRefGoogle Scholar
  19. J. Bougadis, K. Adamowski, R. Diduch, Short-term municipal water demand forecasting. Hydrol. Process. 19, 137–148 (2005). Scholar
  20. G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1976)Google Scholar
  21. F.J. Chang, H.F. Hu, Y.C. Chen, Counterpropagation fuzzy–neural network for streamflow reconstruction. Hydrol. Process. 15(2), 219–232 (2001)CrossRefGoogle Scholar
  22. S.P. Charles, M.A. Bari, A. Kitsios, B.C. Bates, Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment, western Australia. Int. J. Climatol. 27, 1673–1690 (2007)CrossRefGoogle Scholar
  23. V.T. Chow, Handbook of Applied Hydrology (McGraw-Hill, New York, 1964)Google Scholar
  24. V.T. Chow, D.R. Maidment, L.W. Mays, Applied Hydrology (McGraw-Hill, New York, 1988)Google Scholar
  25. T.A. Clair, J.M. Ehrman, Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resour. Res. 34(3), 447–455 (1998)CrossRefGoogle Scholar
  26. M. Cobaner, Evapotranspiration estimation by two different neuro-fuzzy inference systems. J. Hydrol. 398, 292–302 (2011)CrossRefGoogle Scholar
  27. P. Coulibaly, N.D. Evora, Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 341, 27–41 (2007)CrossRefGoogle Scholar
  28. I. Daliakopoulos, P. Coulibaly, I. Tsanis, Ground water level forecasting using artificial neural networks. J. Hydrol. 309(1-4), 229–240 (2005)CrossRefGoogle Scholar
  29. T. Dalrymple, Flood frequency methods. U.S. Geol. Surv. Water Supply Pap., 1543-A, 11–51 (1960)Google Scholar
  30. C.W. Dawson, R.J. Abrahart, Evaluation of two different methods for the antecedent precipitation index in neural network river stage forecasting. Geophys. Res. Abstr. 07522, 9 (2007)Google Scholar
  31. C. Dou, W. Woldt, I. Bogardi, M. Dahab, Steady State Groundwater Flow Simulation With Imprecise Parameters. Water Resour. Res. 31(11), 2709–2719 (1995)CrossRefGoogle Scholar
  32. C. Dou, W. Woldt, I. Bogardi, Fuzzy rule-based approach to describe solute transport in the unsaturated zone. J. Hydrol. 220(1), 74–85 (1999)CrossRefGoogle Scholar
  33. G. Dumedah, P. Coulibaly, Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data. J. Hydrol. 400(1-2), 95–102 (2011)CrossRefGoogle Scholar
  34. S.R. Durrans, S. Tomic, Comparison of parametric tail estimators for low-flow frequency analysis. J. Am. Water Resour. Assoc. 37(5), 1203–1214 (2001)CrossRefGoogle Scholar
  35. J.K. Eischeid, P.A. Pasteris, H.F. Diaz, M.S. Plantico, N.J. Lott, Creating a serially complete, national daily time series of temperature and precipitation for the Western United States. J. Appl. Meteorol. 39, 1580–1591 (2000)CrossRefGoogle Scholar
  36. S. El Aldouni, T. Ouarda, X. Zhang, R. Roy, B. Bobee, Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res. 43, 1–13 (2007)Google Scholar
  37. A.K. Eldaw, J.D. Salas, L.A. Garcia, Long-range forecasting of the Nile River flows using climatic forcing. J. Appl. Meteorol. 42(7), 890–904 (2003)CrossRefGoogle Scholar
  38. R.F. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of United Kindom inflation. Econometrica 50(4), 987–1007 (1982)CrossRefGoogle Scholar
  39. M.A. Fedora, R.L. Beschta, Storm runoff simulation using an antecedent precipitation index (API) model. J. Hydrol. 112, 121–133 (1989)CrossRefGoogle Scholar
  40. R.I.C.C. Francis, J.A. Renwick, A regression-based assessment of the predictability of New Zealand climate anomalies. Theor. Appl. Climatol. 60, 21–36 (1998)CrossRefGoogle Scholar
  41. M. Friedman, A. Kandel, Introduction to Pattern Recognition: Statistical, Structural, Neural, and Fuzzy Logic Approaches, Series in Machine Perception Artificial Intelligence, vol 32 (World Scientific, Singapore, 1999)Google Scholar
  42. W.E. Fuller, Flood flows. Trans. ASCE 77(1293), 564–617 (1914)Google Scholar
  43. D. Gautam, K. Holz, Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J. Hydroinf. 3, 3–10 (2001)CrossRefGoogle Scholar
  44. T. Glade, M.J. Crozier, P. Smith, Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical (Antecedent Daily Rainfall Model). Pure Appl. Geophys. 157(6/8), 1059–1079 (2000)CrossRefGoogle Scholar
  45. C.T. Haan, Statistical Methods in Hydrology, 2nd edn. (Iowa State University Press, Ames, 2002.) 496 ppGoogle Scholar
  46. M. Hallack-Alegria, D.W. Watkins, Annual and warm season drought intensity-duration-frequency analysis for Sonora, Mexico. J. Clim. 20(9), 1897–1909 (2007)CrossRefGoogle Scholar
  47. S. Haykin, Neural Networks (MacMillan, London, 1994)Google Scholar
  48. Z. He, X. Wen, H. Liu, J. Du, A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J. Hydrol. 509, 379–386 (2014)CrossRefGoogle Scholar
  49. R.J. Heggen, Normalized antecedent precipitation index. J. Hydrol. Eng. ASCE 6(5), 377–381 (2001)CrossRefGoogle Scholar
  50. B.C. Hewitson, R.G. Crane, Climate downscaling: techniques and application. Clim. Res. 7, 85–95 (1996)CrossRefGoogle Scholar
  51. J.D. Hewlett, A.R. Hibbert, Factors affecting the response of small watersheds to precipitation in humid regions, in Forest Hydrology, ed. by W. E. Sopper, H. W. Lull, (Pergamon Press, Oxford, 1967), pp. 275–290.Google Scholar
  52. Y.S. Hong, M.R. Rosen, R.R. Reeves, Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers. J. Hydrol. Eng. 7(5), 380–391 (2002)CrossRefGoogle Scholar
  53. Y. Hong, R.F. Adler, F. Hossain, S. Curtis, G.J. Huffman, A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res. 43, W08502 (2007). Scholar
  54. J.R.M. Hosking, J.R. Wallis, Regional frequency analysis: an approach based on L-moments (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  55. J.R.M. Hosking, J.R. Wallis, E.F. Wood, An appraisal of the regional flood frequency procedure in the UK Flood Studies Report. Hydrol. Sci. J. 30, 85–109 (1985)CrossRefGoogle Scholar
  56. J.R.M. Hosking, J.R. Wallis, Some statistics useful in regional frequency analysis: Water Resource Research, 29(2), 271–281 (1993)CrossRefGoogle Scholar
  57. J.F.T. Houston, Groundwater system simulation by time series techniques. Ground Water 21, 301–310 (1983)CrossRefGoogle Scholar
  58. K.-L. Hsu, H.V. Gupta, S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31, 2517–2530 (1995)CrossRefGoogle Scholar
  59. K.L. Hsu, X. Gao, S. Sorooshian, H.V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 36(9), 1176–1190 (1997)CrossRefGoogle Scholar
  60. Y. Huang, X. Chen, et al., A fuzzy-based simulation method for modelling hydrological processes under uncertainty. Hydrol. Process. 24(25), 3718–3732 (2010)CrossRefGoogle Scholar
  61. Y. Hundecha, A. Bardossy, H.W. Werner, Development of a fuzzy logic-based rainfall-runoff model. Hydrol. Sci. J. 46(3), 363–376 (2001)CrossRefGoogle Scholar
  62. A.P. Jacquin, A.Y. Shamseldin, Development of rainfall-runoff models using Takagi–Sugeno fuzzy inference systems. J. Hydrol. 329, 154–173 (2006)CrossRefGoogle Scholar
  63. S.K. Jain, A. Das, D.K. Srivastava, Application of ANN for Reservoir Inflow Prediction and Operation. J. Water Resour. Plan. Man. ASCE, 125(5), 263–271 (1999)CrossRefGoogle Scholar
  64. J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing (Prentice-Hall, Englewood Cliffs, NJ, 1997)Google Scholar
  65. B. Janos, D. Lucien, H.R. Omar, Practical generation of synthetic rainfall event time series in a semi-arid climatic zone. J. Hydrol. 103, 357–373 (1988)CrossRefGoogle Scholar
  66. C. Jorge, Forecasting water consumption in Spain using univariate time series models. Proc IEEE Span. Comput. Intell. Soc. 2007, 415–423 (2007)Google Scholar
  67. M. Karamouz, S. Sara Nazif, M. Falahi, Hydrology and Hydroclimatology: Principles and Applications (CRC Press, Boca Raton, 2012)CrossRefGoogle Scholar
  68. N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering (MIT Press, Cambridge, MA, 1996)Google Scholar
  69. M.N. Khaliq, T.B.M.J. Ouarda, J.-C. Ondo, P. Gachon, B. Bobée, Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol. 329, 534–552 (2006)CrossRefGoogle Scholar
  70. Ö. Kişi, Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12(5), 532–539 (2007)CrossRefGoogle Scholar
  71. G. Kite, Use of time series analyses to detect climatic change. J. Hydrol. 111, 259–279 (1989)CrossRefGoogle Scholar
  72. T.R. Kjeldsen, J.C. Smithers, R.E. Schulze, Flood frequency analysis at ungauged sites in the KwaZulu-Natal Province, South Africa. Water SA 27(3), 315–324 (2001)CrossRefGoogle Scholar
  73. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Prentice Hall, Upper Saddle River, 1995)Google Scholar
  74. M. A. Kohler, R. K. Linsley, Predicting the Runoff from Storm Rainfall, U.S. Weather Bureau Research Paper No. 34 (1951)Google Scholar
  75. R. Kruse, J.E. Gebhardt, F. Klowon, Foundations of Fuzzy Systems (Wiley, New York, 1994)Google Scholar
  76. M. Kumar, N. Raghuwanshi, R. Singh, W. Wallender, W. Pruitt, Estimating evapotranspiration using artificial neural network. J. Irrig. Drain. Eng. 128(4), 224–233 (2002)CrossRefGoogle Scholar
  77. R. Kumar, C. Chatterjee, S. Kumar, A.K. Lohani, R.D. Singh, Development of regional flood frequency relationships using L-moments for Middle Ganga Plains Subzone 1(f) of India. Water Resour. Manag. 17(4), 243–257 (2003)CrossRefGoogle Scholar
  78. G. Lachtermacher, J.D. Fuller, Backpropagation in hydrological time series forecasting, in Stochastic and Statistical Methods in Hydrology and Environmental Engineering, (Springer, Cham, 1994), pp. 229–242CrossRefGoogle Scholar
  79. X. Lana, A. Burgueno, Daily dry-wet behavior in Catalonia (NE Spain) from the viewpoint of the first and second order Markov chains. Int. J. Clim. 18, 793–815 (1998)CrossRefGoogle Scholar
  80. X. Lana, M.D. Martínez, A. Burgueño, C. Serra, Return period maps of dry spells for Catalonia (northeastern Spain) based on the Weibull. Hydrol. Sci. J. 53, 48–64 (2008)CrossRefGoogle Scholar
  81. S.A. Lawal, W.E. Watt, Non-zero lower limit in low flow frequency analysis? Water Resour. Bull. 32(6), 1159–1166 (1996)CrossRefGoogle Scholar
  82. M. Leclerc, T.B.M.J. Ouarda, Non-stationary regional flood frequency analysis at ungauged sites. J. Hydrol. 343, 254–264 (2007)CrossRefGoogle Scholar
  83. Y.H. Lim, D.L. Voeller, Regional flood estimations in Red River using L-moment-based index-flood and Bulletin 17B Procedures. J. Hydrol. Eng. 14(9), 1002–1016 (2009)CrossRefGoogle Scholar
  84. S. Liu, L. Leslie, M. Speer, R. Bunker, Predicting forest fire danger using improved model derived soil-moisture and antecedent precipitation. International Congress on Modelling and Simulation, Townsville, Australia, July 14–17, 2003Google Scholar
  85. Y.L. Loukas, Adaptive Neuro-Fuzzy Inference System, An Instant and Architecture-Free Predictor for Improved QSAR Studies. J. Med. Chem. 44(17), 2772–2783 (2001)CrossRefGoogle Scholar
  86. T. Ma, C. Li, Z. Lu, B. Wang, An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216, 187–192 (2014)CrossRefGoogle Scholar
  87. D. Machiwal, M.K. Jha, Time series analysis of hydrologic data for water resources planning and management: A review. J. Hydrol. Hydromech. 54(3), 237–257 (2006)Google Scholar
  88. A. Makarau, M.R. Jury, Predictability of Zimbabwe summer rainfall. Int. J. Climatol. 17, 1421–1432 (1997)CrossRefGoogle Scholar
  89. J.M. Mejia, J. Rousselle, Disaggregation Models in hydrology revisited. Water Resour. Res. 12, 185–186 (1976). Scholar
  90. A.K. Mishra, V.R. Desai, Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 19, 326–339 (2005)CrossRefGoogle Scholar
  91. A. Moatmari, M. Longoni, R. Rosso, A seasonal long memory stochastic model for the simulation of daily rived flows. Phys. Chem. Earth (B) 24(4), 319–324 (1999)CrossRefGoogle Scholar
  92. S. Mohan, N. Arumugam, Forecasting weekly reference crop evapotranspiration series. Hydrol. Sci. J. 40(6), 689–720 (1995)CrossRefGoogle Scholar
  93. T.J. Mulvaney, On the use of self-registering rain and flood gauges. Trans. Inst. Civ. Eng. Ireland 4(2), 1–8 (1850)Google Scholar
  94. R.J. Nathan, T.A. McMahon, Practical Aspects of Low-Flow Frequency Analysis. Water Resour. Res. 26(9), 2135–2141 (1990)Google Scholar
  95. D.W. Newton, J.C. Herrin, Assessment of commonly used methods of estimating flood frequency. Transportation Research Record, Series 896, Washington, DC, pp. 10–30 (1982)Google Scholar
  96. T. Ouarda, S. El-Aldouni, Bayesian nonstationarity frequency analysis of hydrological variables. J. Amer. Water Resour. Assoc. 47, 496–505 (2011)CrossRefGoogle Scholar
  97. T. Öztekin, Wakeby distribution for representing annual extreme and partial duration rainfall series. Meteorol. Appl. 14, 381–387 (2007)CrossRefGoogle Scholar
  98. G.R. Pandey, V.T.V. Nguyen, A comparative study of regression based methods in regional flood frequency analysis. J. Hydrol. 225, 92–101 (1999)CrossRefGoogle Scholar
  99. K. Pearson, On the generalized probable error in multiple normal correlation. Biometrika 6, 59–68 (1908)CrossRefGoogle Scholar
  100. P. Pekarova, J. Pekar, Long-term discharge prediction for the Turnu Severin station (the Danube) using a linear autoregressive model. Hydrol. Process. 20, 1217–1228 (2006)CrossRefGoogle Scholar
  101. G. Pesti, B.P. Shrestha, L. Duckstein, I. Bogárdi, A fuzzy rule-based approach to drought assessment. Water Resour. Res. 32(6), 1741–1747 (1996)CrossRefGoogle Scholar
  102. A. Piegat, Fuzzy Modeling and Control. Studies in Fuzziness and Soft Computing (Book 69) (Springer, Berlin, 2001)Google Scholar
  103. D. H. Pilgrim (ed.), Australian Rainfall and Runoff: A Guide to Flood Estimation, Volumes I and II (Institution of Engineers Australia, Canberra, 1998)Google Scholar
  104. A.S. Polebitski, R.N. Palmer, Seasonal residential water demand forecasting for census tracts. J. Water Resour. Plan. Manag. 136(1), 27–36 (2009)CrossRefGoogle Scholar
  105. R. Pongracz, J. Bartholy, I. Bogardi, Fuzzy rule-based prediction of monthly precipitation. Phys. Chem. Earth BHydrol. Oceans Atmos. 26(9), 663–667 (2001)CrossRefGoogle Scholar
  106. M.P. Rajurkar, U.C. Kothyari, U.C. Chaube, Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285, 96–113 (2004)CrossRefGoogle Scholar
  107. H. Raman, V. Chandramouli, Deriving a general operating policy for reservoirs using neural networks. J. Water Resour. Plan. Manag. 122(5), 342–347 (1996)CrossRefGoogle Scholar
  108. H. Raman, N. Sunilkumar, Multi-variate modeling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40, 145–163 (1995)CrossRefGoogle Scholar
  109. B. Renard, M. Lang, P. Bois, Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch. Env. Res. Risk Asess. 21, 97–112 (2006)CrossRefGoogle Scholar
  110. H.C. Riggs, Streamflow characteristics: Developments in water science 22 (Elsevier, Amsterdam, 1985)Google Scholar
  111. L.L. Rogers, F.U. Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 30(2), 457–481 (1994)CrossRefGoogle Scholar
  112. S.O. Russell, P.F. Campbell, Reservoir operating rules with fuzzy programming. J. Water Resour. Plann. Manag. 122(3), 165–170 (1996)CrossRefGoogle Scholar
  113. B. Saf, Regional flood frequency analysis using L-moments for the west Mediterranean region of Turkey. Water Resour. Manag. 23(3), 531–551 (2009)CrossRefGoogle Scholar
  114. J.D. Salas, Analysis and modeling of hydrologic time series, Chapter 19, in Handbook of Hydrology, ed. by D. R. Maidement (McGraw-Hill, New York, 1993)Google Scholar
  115. J.D. Salas, J.W. Deulleur, V. Yevjevich, W.L. Lane, Applied Modeling of Hydrologic Time Series (Water Resources Publications, Littleton, 1980)Google Scholar
  116. A. Sankarasubramanian, U. Lall, Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour. Res. 39, 4.1–4.12 (2003)CrossRefGoogle Scholar
  117. K.E. Saxton, A.M. ASCE, A.T. Lenz, F. ASCE, Antecedent retention indexes predict soil moisture. J. Hydraul. Div. ASCE 93(HY4, Proc. Paper 5351), 223–241 (1967)Google Scholar
  118. K. Schulz, B. Huwe, Water flow modeling in the unsaturatedzone with imprecise parameters using a fuzzy approach. J. Hydrol. 201, 211–229, (1997). Scholar
  119. L. See, S. Openshaw, Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44(5), 763–778 (1999)CrossRefGoogle Scholar
  120. A.Y. Shamseldin, Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199, 272–294 (1997)CrossRefGoogle Scholar
  121. V.N. Sharda, S.O. Prasher, R.M. Patel, P.R. Ojasvi & Chandra Prakash. Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data / Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données. Hydrol. Sci. J. 53(6), 1165–1175 (2008). Scholar
  122. Q.X. Shao, H. Wong, M. Li, W.C. Ip, Streamflow forecasting using functional-coefficient time series model with periodic variation. J. Hydrol. 368, 88–95 (2009)CrossRefGoogle Scholar
  123. J. Shiri, A.H. Nazemi, A.A. Sadraddini, G. Landeras, O. Kisi, A.F. Fard, P. Marti, Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J. Hydrol. 480, 46–57 (2013)CrossRefGoogle Scholar
  124. J. Shiri, P. Marti, A.H. Nazemi, A.A. Sadraddini, O. Kisi, Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing. Hydrol. Res. 46(1), 72–88 (2014). Scholar
  125. C. Shu, D.H. Burn, Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. J. Hydrol. 291(1-2), 132–149 (2004)CrossRefGoogle Scholar
  126. K. Schulz, B. Huwe, Water flow modeling in the unsaturatedzone with imprecise parameters using a fuzzy approach. J. Hydrol. 201, 211–229 (1997). Scholar
  127. W.T. Sittner, C.E. Schauss, J.C. Monro, Continuous hydrograph synthesis with an API type hydrological model. Water Resour. Res. 5(5), 1007–1022 (1969)CrossRefGoogle Scholar
  128. J.R. Stedinger, R.M. Vogel, E. Foufoula-Georgiou, Frequency analysis of extreme events, Chapter 18, in Handbook of Applied Hydrology, ed. by D. R. Maidment (McGraw-Hill, New York, 1993), pp. 1–66Google Scholar
  129. W.G. Strupczewski, V.P. Singh, H.T. Mitosek, Non-stationary approach to at-site flood frequency modelling, III. Flood analysis of Polish rivers. J. Hydrol. 248, 152–167 (2001)CrossRefGoogle Scholar
  130. M. Sugeno, G.T. Kang, Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)CrossRefGoogle Scholar
  131. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)CrossRefGoogle Scholar
  132. D.M. Thomas, M.A. Benson, Generalization of streamflow characteristics from drainage-basin characteristics, US Geological Survey, Water Supply Paper, 1975 (1970)Google Scholar
  133. United States Water Resources Council, Guidelines for determining flood flow frequency Bull. 17B, U.S. Water Resour. Counc. Hydrol. Comm., Washington, DC (1982)Google Scholar
  134. R.D. Valencia, J.C. Schaake, Disaggregation processes in stochastic hydrology. Water Resour. Res. 9, 580–585 (1973). Scholar
  135. F.C. Van Geer, A.F. Zuur, An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series. J. Hydrol. 192, 65−80 (1997)Google Scholar
  136. W. Viessman Jr., G.L. Lewis, Introduction to Hydrology, 4th edn. (Harper Collins, New York, 1996)Google Scholar
  137. R.M. Vogel, C.N. Kroll, Generalized low-flow frequency relationships for ungaged sites in Massachusetts. Water Resour. Bull. 26(2), 241–253 (1990)CrossRefGoogle Scholar
  138. R.M. Vogel, I. Wilson, Probability distribution of annual maximum, mean, and minimum streamflows in the United States. ASCE J. Hydrol. Eng. 1(2), 69–76 (1996)CrossRefGoogle Scholar
  139. R.M. Vogel, W.O. Thomas Jr., T.A. McMahon, Flood-flow frequency model selection in Southwestern United States. J. Water Resour. Plann. Manag. 119(3), 353–366 (1993)CrossRefGoogle Scholar
  140. L.X. Wang, A Course in Fuzzy Systems and Control (Prentice-Hall, Englewood Cliffs, 1997)Google Scholar
  141. W.D. Weeks, W.C. Boughton, Tests of ARMA model forms for rainfall-runoff modeling. J. Hydrol. 91, 29–47 (1987)CrossRefGoogle Scholar
  142. J.R. Westmacott, D.H. Burn, Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. J. Hydrol. 202(1-4), 263–279 (1997)CrossRefGoogle Scholar
  143. R.L. Wilby, L.E. Hay, G.H. Leavesley, A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 225, 67–91 (1999)CrossRefGoogle Scholar
  144. C.L. Wu, K.W. Chau, Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 399, 394–409 (2011)CrossRefGoogle Scholar
  145. L. Xiong, A.Y. Shamseldin, K.M. O’Connor, A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system. J. Hydrol. 245, 196–217 (2001)CrossRefGoogle Scholar
  146. L. Xiong, K.M. O’Connor, S. Guo, Comparison of three updating schemes using artificial neural network in flow forecasting. Hydrol. Earth. Sys. Sci. 8(2), 247–255 (2004)CrossRefGoogle Scholar
  147. A. Yasar, M. Bilgili, E. Simsek, Water demand forecasting based on stepwise multiple nonlinear regression analysis. Arab. J. Sci. Eng. 37(8), 2333–2341 (2012)CrossRefGoogle Scholar
  148. X.Y. Yu, S.Y. Liong, Forecasting of hydrologic time series with ridge regression in feature space. J. Hydrol. 332, 290–302 (2007)CrossRefGoogle Scholar
  149. P.S. Yu, T.C. Yang, Fuzzy multi-objective function for rainfall-runoff model calibration. J. Hydrol. 238, 1), 1–1),14 (2000)CrossRefGoogle Scholar
  150. S. Yue, C.Y. Wang, Possible regional probability distribution type of Canadian annual streamflow by L-moments. Water Resour. Manag. 18(5), 425–438 (2004)CrossRefGoogle Scholar
  151. M.A. Yurdusev, M. Firat, Adaptive neuro fuzzy inference system approach for municipal water consumption modeling, An application to Izmir, Turkey. J. Hydrol. 365(3-4), 225–234 (2009)CrossRefGoogle Scholar
  152. L.A. Zadeh, Fuzzy sets. Inf. Control. 8, 338–353 (1965)CrossRefGoogle Scholar
  153. C.M. Zealand, D.H. Burn, S.P. Simonovic, Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214, 32–48 (1999)CrossRefGoogle Scholar
  154. H.J. Zimmermann, Fuzzy Set Theory and Its Applications, 4th edn. (Kluwer Academic Publishers, Boston, 2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of OsloOsloNorway
  2. 2.Department of Hydrology and Water ResourcesWuhan UniversityWuhanChina
  3. 3.Department of Biological and Agricultural Engineering and Zachry Department of Civil EngineeringTexas A and M UniversityCollege StationUSA

Personalised recommendations