Advertisement

Overview of Weather and Climate Systems

  • Huiling YuanEmail author
  • Zoltan TothEmail author
  • Malaquias Peña
  • Eugenia Kalnay
Reference work entry

Abstract

Weather and climate phenomena develop as part of the coupled ocean-atmosphere-land-ice system. To understand the nature of the coupled system and its constituent processes, as well as the basis for and the limits of their predictability, some important concepts are reviewed, including determinism, chaotic error growth, and linear as well as nonlinear perturbation dynamics. It is shown that weather is predictable but only for finite times. Initial and model errors amplify, eventually rendering weather and climate forecasts useless. First, skill is lost in forecasts of fine-scale features while larger-scale phenomena remain predictable for longer periods of time. Processes and other characteristics associated with different scales of motion are discussed next, proceeding from the finest to the largest, coupled global-scale ocean-atmosphere phenomena. The potential use of ensemble forecast techniques to quantify scale and case-dependent predictability in the context of hydrologic forecasting is emphasized throughout.

Keywords

Predictability Chaotic and dynamical systems Nonlinear interactions Scales of motion Ensemble prediction systems (EPS) Weather and climate systems Coupled Ocean-atmosphere-land system 

References

  1. C.D. Ahrens, Meteorology Today: An Introduction to Weather, Climate, and the Environment, 9th edn. (Brooks Cole, Belmont, 2008), 549 ppGoogle Scholar
  2. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).  https://doi.org/10.1038/nature14956CrossRefGoogle Scholar
  3. G.J. Boer, Predictability as a function of scale. Atmosphere-Ocean 41, 203–215 (2003).  https://doi.org/10.3137/ao.410302CrossRefGoogle Scholar
  4. G. Boffetta, P. Giuliani, G. Paladin, A. Vulpiani, An extension of the Lyapunov analysis for the predictability problem. J. Atmos. Sci. 55, 3409–3416 (1998)CrossRefGoogle Scholar
  5. D. Bright, Ways of viewing and interpreting ensemble forecasts: applications in severe weather forecasting, in Preprints, The AMS Short Course on Ensemble Prediction: Conveying Forecast Uncertainty, American Meteorological Society, San Antonio (2007)Google Scholar
  6. H.E. Brooks, M. Steven Tracton, David J. Stensrud, Geoffrey DiMego and Zoltan Toth Short-Range Ensemble Forecasting: Report from a Workshop, 25–27 July 1994. Bulletin of the American Meteorological Society. 76(9), 1617–1624 (1995)Google Scholar
  7. R. Buizza, A. Hollingsworth, F. Lalaurette, A. Ghelli, Probabilistic predictions of precipitation using the ECMWF ensemble prediction system. Weather Forecast. 14, 168–189 (1999)CrossRefGoogle Scholar
  8. J.P. Cangialosi, J.L. Franklin, 2010 National Hurricane Center forecast verification report. NHC report (2011), 77pp. http://www.nhc.noaa.gov/verification/pdfs/Verification_2010.pdf
  9. Y.H. Ding, Y.J. Liu, Y.F. Song, J. Zang, From MONEX to the global monsoon: A review of monsoon system research. Adv. Atmos. Sci. 32, 10–31 (2015)CrossRefGoogle Scholar
  10. J. Du, S. Mullen, F. Sanders, Short-range ensemble forecasting of quantitative precipitation. Mon. Weather Rev. 125, 2427–2459 (1997)CrossRefGoogle Scholar
  11. ECMWF, Early medium-range forecasts of tropical cyclones. ECMWF Newsletter, P. White, Ed., ECMWF, No. 102 – Winter 2004/05 (2004), pp. 7–14. https://www.ecmwf.int/en/elibrary/14623-newsletter-no102-winter-2004-05
  12. R.L. Elsberry, L.E. Carr III, Consensus of dynamical tropical cyclone track forecasts-error versus spread. Mon. Weather Rev. 128, 4131–4138 (2000)CrossRefGoogle Scholar
  13. E.S. Epstein, Stochastic dynamic prediction. Tellus 21, 739–759 (1969)CrossRefGoogle Scholar
  14. R. Errico, What is an Adjoint model? Bull. Maerican Meteorol. Soc. 78, 2577–2591 (1997)CrossRefGoogle Scholar
  15. R. Errico, T. Vukicevic, K. Raeder, Examination of the accuracy of a tangent linear model. Tellus 45A, 462–497 (1993)CrossRefGoogle Scholar
  16. J. Feng, J. Li, R. Ding, Z. Toth, Comparison of nonlinear local Lyapunov vectors and bred vectors in estimating the spatial distribution of error growth. J. Atmos. Sci. 75, 1073–1087 (2017). (under review)CrossRefGoogle Scholar
  17. T.T Fujita Tornadoes and Downbursts in the Context of Generalized Planetary Scales. Journal of the Atmospheric Sciences, 38(8), 1511–1534 (1981)CrossRefGoogle Scholar
  18. J.S. Goerss, Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Weather Rev. 128, 1187–1193 (2000)CrossRefGoogle Scholar
  19. T.M. Hamill, S.J. Colucci, Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Weather Rev. 126, 711–724 (1998)CrossRefGoogle Scholar
  20. T.M. Hamill, M.J. Brennan, B. Brown, et al., NOAA’s future ensemble-based Hurricane forecast products. Bull. Amer. Meteorol. Soc. 93, 209–220 (2012)CrossRefGoogle Scholar
  21. R.N. Hoffman, E. Kalnay, Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus 35A, 100–118 (1983)CrossRefGoogle Scholar
  22. C.O. Justice, J.R.G. Townshend, E.F. Vermote, E. Masuoka, R.E. Wolfe, N. Saleous, D.P. Roy, J.T. Morisette, An overview of MODIS land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002)CrossRefGoogle Scholar
  23. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003)., 341ppGoogle Scholar
  24. O. Knill, The Lorenz system. Math 118 handout. University of Harvard (2005), 1p. http://www.math.harvard.edu/archive/118r_spring_05/handouts/lorentz.pdf
  25. F. Kucharski, F. Molteni, A. Bracco, Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim. Dyn. 26, 79–91 (2006)CrossRefGoogle Scholar
  26. C.E. Leith, Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102, 409–418 (1974)CrossRefGoogle Scholar
  27. J.M. Lewis, Roots of ensemble forecasting. Mon. Weather Rev. 133, 1865–1885 (2005)CrossRefGoogle Scholar
  28. Q. Liu, T. Marchok, H.L. Pan, M. Bender, S. Lord, Improvements in Hurricane Initialization and Forecasting at NCEP with Global and Regional (GFDL) Models. Technical procedures bulletin, vol. 472, NCEP/EMC Technical Report (2002), 7p. http://www.nws.noaa.gov/om/tpb/472.pdf
  29. E.N. Lorenz, Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  30. E.N. Lorenz, Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26, 636–646 (1969)CrossRefGoogle Scholar
  31. E.N. Lorenz, Predictability: does the flap of a butterfly’s wings in Brazil set off a Tornado in Texas? 139th Meeting of the American Association for the Advancement of Science, Boston (1972)Google Scholar
  32. P. Lynch, The swinging spring: a simple model of atmospheric balance, in Large-Scale Atmosphere-Ocean Dynamics, ed. by J. Norbury, I. Roulstone, vol. II (Cambridge University Press, Cambridge, 2002a), pp. 64–108Google Scholar
  33. P. Lynch, Resonant motions of the three-dimensional elastic pendulum. Nonlin. Mech. 37, 345–367 (2002b)CrossRefGoogle Scholar
  34. L. Magnusson, J.R. Bidlot, S.T. Lang, A. Thorpe, N. Wedi, M. Yamaguchi, Evaluation of medium-range forecasts for hurricane Sandy. Mon. Weather Rev. 142, 1962–1981 (2014)CrossRefGoogle Scholar
  35. P. Markowski, Y. Richardson, Mesoscale Meteorology in Midlatitudes (Hoboken, Wiley, 2010), 407ppCrossRefGoogle Scholar
  36. T. Miyoshi, K. Kondo, T. Imamura, The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett. 41, 5264–5271 (2014)CrossRefGoogle Scholar
  37. F. Molteni, R. Buizza, T.N. Palmer, T. Petroliagis, The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996)CrossRefGoogle Scholar
  38. M. Mu Nonlinear singular vectors and nonlinear singular values. Science in China (D). 43, 375–385 (2000)Google Scholar
  39. M. Mu, W.S. Duan, B. Wang, Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys. 10, 493–501 (2003)CrossRefGoogle Scholar
  40. S. Mullen, J. Du, F. Sanders, The dependence of ensemble dispersion on analysis–forecast systems: Implications to short-range ensemble forecasting of precipitation. Mon. Weather Rev. 127, 1674–1686 (1999)CrossRefGoogle Scholar
  41. R. Mureau, F. Molteni, T.N. Palmer, Ensemble prediction using dynamically-conditioned perturbations. Q. J. R. Meteorol. Soc. 119, 299–323 (1993)CrossRefGoogle Scholar
  42. I. Orlanski, A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteorol. Soc. 56, 527–530 (1975)CrossRefGoogle Scholar
  43. T.N. Palmer, F. Molteni, R. Mureau, R. Buizza, P. Chapelet, J. Tribbia, Ensemble prediction, in Proceedings ECMWF Seminar on Validation of Models over Europe, vol. 1, (ECMWF, Shinfield Park, 1993), pp. 21–66Google Scholar
  44. C. Qian, F. Zhang, Y. Duan, Probabilistic evaluation of the prediction and dynamics of super typhoon Megi (2010). Weather Forecast. 28, 1562–1577 (2013)CrossRefGoogle Scholar
  45. C.S. Ramage Monsoon Meteorology. International geophysics series; v. 15. Academic Press, 296pp (1971)Google Scholar
  46. J. Rhome, Technical summary of the National Hurricane Center track and intensity models. NOAA Mariners Weather Log. 53(2) (2009). http://www.vos.noaa.gov/MWL/aug_09/techsummary.shtml
  47. D.J. Stensrud, H.E. Brooks, J. Du, M.S. Tracton, E. Rogers, Using ensembles for short-range forecasting. Mon. Weather Rev. 127, 433–446 (1999)CrossRefGoogle Scholar
  48. I. Stewart, Does God Play Dice? The Mathematics of Chaos (Blackwell Publishing, Cambridge, 1989). 393ppGoogle Scholar
  49. X. Su, H. Yuan, Y. Zhu, Y. Luo, Y. Wang, Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. J. Geophys. Res.-Atmos. 119, 7292–7310 (2014).  https://doi.org/10.1002/2014JD021733CrossRefGoogle Scholar
  50. P.K. Taylor, S.A. Josey, E.C. Kent Observations of Ocean Surface Fluxes: Means and Variability[C]//Seminar on Atmosphere-surface interaction. 1999:1-31, Seminar on Atmosphere-surface Interaction, 8–12 September 1997 (1999).Google Scholar
  51. Z. Toth, R. Buizza, Weather forecasting: What sets the forecast skill horizon? in The Gap Between Weather and Climate Forecasting: Subseasonal to Seasonal Prediction, ed. by A. Robinson, F. Vitard (Elsevier, 2018), Elsevier, Cambridge, Massachusetts, USA p. 38. in printGoogle Scholar
  52. Z. Toth, E. Kalnay, Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc 74, 2317–2330 (1993)CrossRefGoogle Scholar
  53. Z. Toth, E. Kalnay, Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 125, 3297–3319 (1997)CrossRefGoogle Scholar
  54. Z. Toth, E. Kalnay, M.S. Tracton, R. Wobus, J. Irwin, A synoptic evaluation of the NCEP ensemble. Weather Forecast. 12, 140–153 (1997)CrossRefGoogle Scholar
  55. Z. Toth, Y. Zhu, I. Szunyogh, M. Iredell, R. Wobus, Does increased model resolution enhance predictability? in Preprints, Symposium on Observations, Data Assimilation, and Probabilistic Prediction, American Meteorological Society, Orlando (2002), CD-ROM, J1.9Google Scholar
  56. M.S. Tracton, E. Kalnay, Operational ensemble prediction at the National Meteorological Center: Practical aspects. Weather Forecast. 8, 379–400 (1993)CrossRefGoogle Scholar
  57. K.E. Trenberth, D.P. Stepaniak, J.M. Caron, The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969–3993 (2000)CrossRefGoogle Scholar
  58. B. Wang, Q.H. Ding, J. Liu, Concept of global monsoon in The Global Monsoon System: Research and Forecast. pp 3–14 (2011)CrossRefGoogle Scholar
  59. P.J. Webster, The elementary monsoon, in Monsoons, ed. by J.S. Fein, L. Stephens (Wiley, New York, 1987), pp. 3–32Google Scholar
  60. C.E. Williford, T.N. Krishnamurti, R.C. Torres, et al., Real-time multimodel superensemble forecasts of Atlantic tropical systems of 1999. Mon. Weather Rev. 131, 1878–1894 (2003)CrossRefGoogle Scholar
  61. WMO, Guidelines on Ensemble Prediction Systems and Forecasting. World Meteorological Organization (WMO) Technical report, WMO-no. 1091 (2012), 32ppGoogle Scholar
  62. WMO, WMO Tropical Cyclone Program Operational Plan/Manual. World Meteorological Organization (WMO) Geneva, Switzerland. (2017), http://www.wmo.int/pages/prog/www/tcp/operational-plans.html. Accessed 28 Oct 2017
  63. M. Yamaguchi, S.J. Majumdar, Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Weather Rev. 138, 3634–3655 (2010)CrossRefGoogle Scholar
  64. Y. Yamane, T. Hayashi, Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent. Geophys. Res. Lett. 33, L17806 (2006).  https://doi.org/10.1029/2006GL026823CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Atmospheric Sciences and Key Laboratory of Mesoscale Severe Weather, Ministry of EducationNanjing UniversityNanjingChina
  2. 2.Global Systems Division, Earth System Research LaboratoryNational Oceanic and Atmospheric Administration/OARBoulderUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of ConnecticutStorrsUSA
  4. 4.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA

Section editors and affiliations

  • Huiling Yuan
    • 1
  • Zoltan Toth
    • 2
  1. 1.School of Atmospheric Sciences, Nanjing UniversityNanjingChina
  2. 2.Global Systems DivisionEarth System Research Laboratory, National Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations