The Family Methanobacteriaceae

  • Aharon Oren
Reference work entry


The family Methanobacteriaceae (order Methanobacteriales, class Methanobacteria) currently (January 2014) consists of four genera: Methanobacterium, Methanobrevibacter, Methanosphaera and Methanothermobacter, with a total of 49 species. Morphologically the family is very diverse, cell shape varying from cocci or short rods to long filamentous rods. Motility is seldom encountered. The cell wall consists of pseudomurein, and cells generally stain Gram-positive. Polar lipids are based on archaeol and caldarchaeol core lipids. Phopholipid head groups include glucose, myo-inositol, serine and in some genera ethanolamine. All species are strict anaerobes, and most members of the family obtain energy for growth from the reduction of CO2 with H2. Formate is used by many species. Species of the genus Methanosphaera do not reduce CO2 but obtain their energy only from the reduction of methanol by H2. The mol% G+C of the DNA varies between 23 and 62. Members of the family are widely distributed in anaerobic environments including aquatic sediments, sewage treatment systems, gastrointestinal tracts of animals, and in geothermal areas.


Anaerobic Digestor Sludge Tetraether Lipid Sewage Treatment System Methanobacterium Formicicum Methanobrevibacter Smithii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed W, Sidhu JPS, Toze S (2012) Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia. Environ Sci Technol 46:543–550PubMedGoogle Scholar
  2. Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA-DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686, Erratum 44:185Google Scholar
  3. Attwood GT, Kelly WJ, Alterman EH, Leahy SC (2008) Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen. Aust J Exp Agric 48:83–88Google Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  5. Bank S, Yan B, Miller TL (1996) Solid13C CPMAS NMR spectroscopy studies of biosynthesis in whole cells of Methanosphaera stadtmanae. Solid State Nucl Magn Reson 7:253–261PubMedGoogle Scholar
  6. Baresi L, Bertani G (1984) Isolation of a bacteriophage for a methanogenic bacterium. In: Abstracts of the annual meeting of the American Society for Microbiology, New Orleans, Abstract I-74. American Society for Microbiology, Washington, DC, p 133Google Scholar
  7. Barker HA (1936) Studies upon the methane-producing bacteria. Arch Mikrobiol 7:420–438Google Scholar
  8. Barker HA (1956) Bacterial fermentations. Wiley, New YorkGoogle Scholar
  9. Belay N, Johnson R, Rajagopal BS, Conway de Macario E, Daniels L (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54:600–603PubMedCentralPubMedGoogle Scholar
  10. Belay N, Mukhopadtyay B, Conway de Macario E, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28:1666–1668PubMedCentralPubMedGoogle Scholar
  11. Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54:768–771PubMedCentralPubMedGoogle Scholar
  12. Blotevogel K-H, Fischer U (1985) Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov. Arch Microbiol 142:218–222Google Scholar
  13. Blotevogel K-H, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch Microbiol 142:211–217Google Scholar
  14. Bonin AS, Boone DR (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 231–243Google Scholar
  15. Boone DR (1987) Request for an opinion: replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol 37:172–173Google Scholar
  16. Boone DR (1995) Short- and long-term maintenance of methanogenic stock cultures. In: Sowers KR, Schreier HJ (eds) Archaea: A laboratory manual. Methanogens. Cold Spring Harbor Laboratory Press, Plainview, pp 79–83Google Scholar
  17. Boone DR (2001a) Class I. Methanobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, p 213Google Scholar
  18. Boone DR (2001b) Genus I. Methanobacterium Kluyver and van Niel 1936, 399AL, emend. Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 284. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, pp 215–218Google Scholar
  19. Boone DR (2001c) Genus IV. Methanothermobacter Wasserfallen, Nölling, Pfister, Reeve and Conway de Macario 2000, 51VP. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, pp 230–232Google Scholar
  20. Boone DR, Whitman WB, Koga Y (2001a) Order I. Methanobacteriales Balch and Wolfe 1981, 216VP (Effective publication Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 268). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, p 214Google Scholar
  21. Boone DR, Whitman WB, Koga Y (2001b) Family I. Methanobacteriaceae Barker 1956, 15AL, emend. Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 267. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, p 214Google Scholar
  22. Borrel G, Joblin K, Guedon A, Colombet J, Tardy V, Lehours A-C, Fonty G (2012) Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62:1625–1629PubMedGoogle Scholar
  23. Bringuier A, Khelaifia S, Richet H, Aboudharam G, Drancourt MJ (2013) Real-time PCR quantification of Methanobrevibacter oralis in periodontitis. J Clin Microbiol 51:993–994PubMedCentralPubMedGoogle Scholar
  24. Brusa T, Conca R, Ferrara A, Ferrari A, Pecchioni A (1987) The presence of methanobacteria in human subgingival plaque. J Clin Periodontol 14:470–471PubMedGoogle Scholar
  25. Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov., and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64 (in press), doi: 10.1099/ijs.0.059964-0Google Scholar
  26. Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77:5212–5219PubMedCentralPubMedGoogle Scholar
  27. Cheng L, He Q, Ding C, Dai L-R, Li Q, Zhang H (2013) Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 85:568–577PubMedGoogle Scholar
  28. Cuzin N, Ouattara AS, Labat M, Garcia J-L (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493PubMedGoogle Scholar
  29. Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J Bacteriol 136:75–84PubMedCentralPubMedGoogle Scholar
  30. Dermoumi HL, Ansorg RAM (2001) Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy 47:177–183PubMedGoogle Scholar
  31. Dighe AS, Jangid K, González JM, Pidiyar VJ, Patole MS, Ranade DR, Shouche YS (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4:20PubMedCentralPubMedGoogle Scholar
  32. Ding X, Yang W-J, Min H, Peng X-T, Zhou H-Y, Lu Z-M (2010) Isolation and characterization of a new strain of Methanothermobacter marburgensis DX01 from hot springs in China. Anaerobe 16:54–59PubMedGoogle Scholar
  33. Doddema HJ, Derksen WJM, Vogels GD (1979) Fimbriae and flagella of methanogenic bacteria. FEMS Microbiol Lett 5:135–138Google Scholar
  34. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063PubMedCentralPubMedGoogle Scholar
  35. Dridi B, Khelaifia S, Fardeau M-L, Ollivier B, Drancourt M (2012) Tungsten-enhanced growth of Methanosphaera stadtmanae. BMC Res Notes 5:238PubMedCentralPubMedGoogle Scholar
  36. Ferrari A, Brusa T, Rutili A, Canzi E, Biavati B (1994) Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr Microbiol 29:7–12Google Scholar
  37. Franke-Whittle IH, Goberna M, Insam H (2009) Design and testing of real-time PCR primers for the quantification of Methanoculleus, Methanosarcina, Methanothermobacter and a group of uncultured methanogens. Can J Microbiol 55:611–616PubMedGoogle Scholar
  38. Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658PubMedCentralPubMedGoogle Scholar
  39. Gilbert RA, Ouwerkerk D, Klieve AV (2010) Isolation of viruses for bio-control of methanogenic archaea from the rumen. Proc Aust Soc Anim Prod 28:68Google Scholar
  40. Grant WD, Pinch G, Harris JE, De Rosa M, Gambacorta A (1985) Polar lipids in methanogen taxonomy. J Gen Microbiol 131:3277–3286Google Scholar
  41. Haines AP, Metz G, Dilawari J, Blendis L, Wiggins H (1977) Breath-methane in patients with cancer of the large bowel. Lancet 310:481–483Google Scholar
  42. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich JA, Heath AC, Knight R, Gordon JI (2011) Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA 108(Suppl 1):4599–4606PubMedCentralPubMedGoogle Scholar
  43. Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endoxymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulotermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127Google Scholar
  44. Harris JE (1985) GELRITE as an agar substitute for the cultivation of mesophilic Methanobacterium and Methanobrevibacter species. Appl Environ Microbiol 50:1107–1109PubMedCentralPubMedGoogle Scholar
  45. Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 1050–1079Google Scholar
  46. Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms: a manual of laboratory methods. Academic, London, pp 69–81Google Scholar
  47. Jain MK, Thompson TE, Conway de Macario E, Zeikus JG (1987) Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov. Syst Appl Microbiol 9:77–82Google Scholar
  48. Jangid K, Rastogi G, Patole MS, Shouche YS (2004) Methanobrevibacter: is it a potential pathogen? Curr Sci 86:1475–1476Google Scholar
  49. Jarvis GN, Strömpl C, Burgess DM, Skilman LC, Moore ERB, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332PubMedGoogle Scholar
  50. Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109:1946–1956PubMedGoogle Scholar
  51. Jones WJ, Holzer GU (1991) The polar and neutral lipid composition of Methanosphaera stadtmanae. Syst Appl Microbiol 14:130–134Google Scholar
  52. Jordan M, Meile L, Leisinger T (1989) Organization of Methanobacterium thermoautotrophicum bacteriophage ψM1 DNA. Mol Gen Genet 220:161–164PubMedGoogle Scholar
  53. Joulian C, Patel BKC, Ollivier B, Garcia J-L, Roger PA (2000) Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50:525–528PubMedGoogle Scholar
  54. Judicial Commission of the International Committee on Systematic Bacteriology (1992) Opinion 64: Designation of strain MF (DSM 1535) in place of strain M.o.H. (DSM 863) as the type strain of Methanobacterium formicicum Schnellen 1947, and designation of strain M.o.H. (DSM 863) as the type strain of Methanobacterium bryantii (Balch and Wolfe in Balch, Fox, Magrum, Woese, and Wolfe 1979, 284) Boone 1987, 173. Int J Syst Bacteriol 42:654Google Scholar
  55. Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria. A treatise on structure and function. Archaebacteria, vol 8. Academic, New York, pp 413–457Google Scholar
  56. Kaster A-K, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK (2011) More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011:973848PubMedCentralPubMedGoogle Scholar
  57. Kawaguchi H, Sakuma T, Nakata Y, Kobayashi H, Endo K, Sato K (2010) Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs. J Biosci Bioeng 110:106–108PubMedGoogle Scholar
  58. Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, Gunsalus R, Pimentel M (2012) Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci 57:3213–3218PubMedGoogle Scholar
  59. Kitamura K, Fujita T, Akada S, Tonouchi A (2011) Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 61:1246–1252PubMedGoogle Scholar
  60. Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 94:369–403Google Scholar
  61. Kneifel H, Stetter KO, Andreesen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Evol Microbiol 7:241–245Google Scholar
  62. Knox MR, Harris JE (1986) Isolation and characterization of a bacteriophage from Methanobrevibacter smithii. In: Abstracts of the XIV international congress of microbiology, Manchester, UK. Abstract P.G3-8, p 240Google Scholar
  63. Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236Google Scholar
  64. Kong Y, Xia Y, Seviour R, Forster R, McAllister TA (2013) Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 84:302–315PubMedGoogle Scholar
  65. König H (1984) Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481Google Scholar
  66. König H (1986) Chemical composition of cell envelopes of methanogenic bacteria isolated from human and animal feces. Syst Appl Microbiol 8:159–162Google Scholar
  67. König H, Kralik R, Kandler O (1982) Structure and modifications of pseudomurein in Methanobacteriales. Zbl Bakt Hyg I Abt Orig C 3:179–191Google Scholar
  68. Kosaka T, Toh H, Toyoda A (2013) Complete genome sequence of a thermophilic hydrogenotrophic methanogen, Methanothermobacter sp. strain CaT2. Genome Announc 1:e00672-13PubMedCentralPubMedGoogle Scholar
  69. Kotelnikova SS, Obraztsova AY, Blotevogel K-H, Popov IN (1993a) Taxonomic analysis of thermophilic strains of the genus Methanobacterium: reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol 43:591–596Google Scholar
  70. Kotelnikova SS, Obraztsova AY, Gongadze GM, Laurinavichius KS (1993b) Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. Syst Appl Microbiol 16:427–435Google Scholar
  71. Kotelnikova S, Macario AJL, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367PubMedGoogle Scholar
  72. Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60:455–459PubMedGoogle Scholar
  73. Krupovič M, Forterre P, Bamford DH (2010) Comparative analyses of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of Bacteria. J Mol Biol 397:144–160PubMedGoogle Scholar
  74. Langworthy TA, Tornabene TG, Holzer G (1982) Lipids of Archaebacteria. Zbl Bakt Hyg I Abt Orig C 3:228–244Google Scholar
  75. Laurinavichius KS, Kotelnikova SV, Obraztsova AY (1988) A new species of the thermophilic methane-forming bacterium Methanobacterium thermophilum. Mikrobiologyia 57:1035–1041 (English translation: Microbiology 57:832–838)Google Scholar
  76. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedCentralPubMedGoogle Scholar
  77. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292PubMedGoogle Scholar
  78. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926PubMedCentralPubMedGoogle Scholar
  79. Leahy SC, Kelly WJ, Li D, Li Y, Altermann E, Lambie SC, Cox F, Attwood GT (2013) The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8:215–227PubMedCentralPubMedGoogle Scholar
  80. Lee J-H, Kumar S, Lee G-H, Chang D-H, Rhee M-S, Yoon M-H, Kim B-C (2013a) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:4196–4201PubMedGoogle Scholar
  81. Lee J-H, Rhee M-S, Kumar S, Lee G-H, Chang D-H, Kim D-S, Choi S-H, Lee D-W, Yoon M-H, Kim B-C (2013b) Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1:e00002–13PubMedCentralPubMedGoogle Scholar
  82. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A 101:6176–6181PubMedCentralPubMedGoogle Scholar
  83. Liesegang H, Kaster A-K, Wiezer A, Goenrich M, Wollherr A, Seedorf H, Gottschalk G, Thauer RK (2010) Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism. J Bacteriol 192:5850–5851PubMedCentralPubMedGoogle Scholar
  84. Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169:397–403PubMedGoogle Scholar
  85. Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ΨM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792PubMedCentralPubMedGoogle Scholar
  86. Ma K, Liu X, Dong X (2005) Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55:325–329PubMedGoogle Scholar
  87. Magingo FSS, Stumm CK (1991) Nitrogen fixation by Methanobacterium formicicum. FEMS Microbiol Lett 81:273–277Google Scholar
  88. Mah RA, Smith MR (1981) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol 1. Springer, New York, pp 948–977Google Scholar
  89. Martin JE, Baresi L (2006) Progress toward genomic investigation of Methanobrevibacter smithii phage PG. Abstracts of the Annual Meeting of the American Society for Microbiology, Orlando, Abstract I-061. American Society for Microbiology, Washington, DC, p 307Google Scholar
  90. Mathur R, Kim G, Morales W, Sung J, Rooks E, Pokkunuri V, Weitsman S, Barlow GM, Chang C, Pimentel M (2013) Intestinal Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain in rats. Obesity 21:748–754PubMedGoogle Scholar
  91. Meile L, Jenal U, Studer D, Jordan M, Leisinger T (1989) Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol 152:105–110Google Scholar
  92. Meile L, Abendschein P, Leisinger T (1990) Transduction in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 172:3507–3508PubMedCentralPubMedGoogle Scholar
  93. Miller TL (2001a) Genus II. Methanobrevibacter Balch and Wolfe 1981, 216VP (Effective publication: Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 284). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: The Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer, New York, pp 218–226Google Scholar
  94. Miller TL (2001b) Genus III. Methanosphaera Miller and Wolin 1985b, 535VP (Effective publication: Miller and Wolin 1985a, 121). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer, New York, pp 226–229Google Scholar
  95. Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52:819–822PubMedGoogle Scholar
  96. Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18PubMedGoogle Scholar
  97. Miller TL, Wolin MJ (1983) Stability of Methanobrevibacter smithii populations in the microbial flora excreted from the human large bowel. Appl Environ Microbiol 45:317–318PubMedCentralPubMedGoogle Scholar
  98. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122PubMedGoogle Scholar
  99. Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229Google Scholar
  100. Miller TL, Wolin MJ, Conway de Macario E, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232PubMedCentralPubMedGoogle Scholar
  101. Miller TL, Chen X, Yan B, Bank S (1995) Solution13C nuclear magnetic resonance spectroscopic analysis of the amino acids of Methanosphaera stadtmanae: biosynthesis and origin of one-carbon units from acetate and carbon dioxide. Appl Environ Microbiol 61:1180–1186PubMedCentralPubMedGoogle Scholar
  102. Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61:138–143PubMedGoogle Scholar
  103. Morii H, Koga Y (1986) Absolute stereochemical configuration of a diphytanyl ether analog of phosphatidylserine of Methanobrevibacter arboriphilus. Biochim Biophys Acta 879:103–105Google Scholar
  104. Morii H, Koga Y (1993) Tetraether type polar lipids increase after logarithmic growth phase of Methanobacterium thermoautotrophicum in compensation for the decrease of diether lipids. FEMS Microbiol Lett 109:283–288Google Scholar
  105. Morii H, Nishihara M, Ohga M, Koga Y (1986) A diphytanyl ether analog of phosphatidylserine from a methanogenic bacterium, Methanobrevibacter arboriphilus. J Lipid Res 27:724–730PubMedGoogle Scholar
  106. Morii H, Nishihara M, Koga Y (1988) Composition of polar lipids of Methanobrevibacter arboriphilicus and structure determination of the signature phosphoglycolipid of Methanobacteriaceae. Agric Biol Chem 52:3149–3156Google Scholar
  107. Morii H, Eguchi T, Koga YJ (2007) In vitro biosynthesis of ether-type glycolipids in the methanoarchaeon Methanothermobacter thermautotrophicus. J Bacteriol 189:4053–4061PubMedCentralPubMedGoogle Scholar
  108. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783PubMedCentralPubMedGoogle Scholar
  109. Nakamura K, Takahashi A, Mori C, Tamaki H, Mochimaru H, Nakamura K, Takamizawa K, Kamagata Y (2013) Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63:715–722PubMedGoogle Scholar
  110. Nishihara M, Morii H, Koga Y (1987) Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J Biochem 101:1007–1015PubMedGoogle Scholar
  111. Nishihara M, Morii H, Koga Y (1989) Heptads of polar ether lipids of an archaebacterium, Methanobacterium thermoautotrophicum: structure and biosynthetic relationship. Biochemistry 28:95–102Google Scholar
  112. Nölling J, Frijlink M, de Vos WM (1991) Isolation and characterization of plasmids from different strains of Methanobacterium thermoformicicum. J Gen Microbiol 137:1981–1986Google Scholar
  113. Nölling J, Groffen A, de Vos WM (1993) ΦF1 and ΦF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. Microbiology 139:2511–2516Google Scholar
  114. Olson KD, McMahon CW, Wolfe RS (1991) Light sensitivity of methanogenic archaebacteria. Appl Environ Microbiol 57:2683–2686PubMedCentralPubMedGoogle Scholar
  115. Patel GB, Sprott GD, Fein JE (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40:12–18Google Scholar
  116. Paynter MJ, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951PubMedCentralPubMedGoogle Scholar
  117. Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244PubMedGoogle Scholar
  118. Piqué JM, Pallarés M, Cusó E, Villar-Bonet J, Gassull MA (1984) Methane production and colon cancer. Gastroenterology 87:601–605, NOT online – From vol 85 onlinePubMedGoogle Scholar
  119. Rea S, Bowman JP, Popovski S, Pimm C, Wright A-DG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456PubMedGoogle Scholar
  120. Rosewarne CP, Greenfield P, Li D, Tran-Dinh N, Midgley DJ, Hendry P (2013) Draft genome sequence of Methanobacterium sp. Maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water. Genome Announc 1:e00082-12PubMedCentralPubMedGoogle Scholar
  121. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648PubMedCentralPubMedGoogle Scholar
  122. Savant DV, Ranade DR (2004) Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci Technol 50:109–114PubMedGoogle Scholar
  123. Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087PubMedGoogle Scholar
  124. Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322PubMedCentralPubMedGoogle Scholar
  125. Schirmack J, Mangelsdorf K, Ganzert L, Sand W, Hillebrand-Voiculescu A, Wagner D (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary alcohol utilizing methanogen from the anoxic sediment of the subsurface lake in Movile Cave, Romania. Int J Syst Evol Microbiol 64:522–527PubMedGoogle Scholar
  126. Schnellen CGTP (1947) Onderzoekingen over de methaangisting. Ph.D. Thesis, Technical University of Delft.Google Scholar
  127. Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61:144–147PubMedGoogle Scholar
  128. Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759–763PubMedGoogle Scholar
  129. Smith PH, Hungate RE (1958) Isolation and characterization of Methanobacterium ruminantium nov. sp. J Bacteriol 75:713–718PubMedCentralPubMedGoogle Scholar
  130. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Safer H, Patwell D, Prabhakar S, McDougall S, Shimer G, Goyal A, Pietrokovski S, Church GM, Daniels CJ, Mao J-I, Rice P, Nölling J, Reeve JN (1997) Complete functional sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedCentralPubMedGoogle Scholar
  131. Sprott GD, Brisson J-R, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, Patel GB (1999) A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta 1440:275–288PubMedGoogle Scholar
  132. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  133. Stax D, Hermann R, Falchetto R, Leisinger T (1992) The lytic enzyme in bacteriophage ψM1-induced lysates of Methanobacterium thermoautotrophicum Marburg. FEMS Microbiol Lett 100:433–438Google Scholar
  134. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311Google Scholar
  135. Stettler R, Erauso G, Leisinger T (1995a) Physical and genetic map of the Methanobacterium wolfei genome and its comparison with the updated genomic map of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol 163:205–210Google Scholar
  136. Stettler R, Thurner C, Stax D, Meile L, Leisinger T (1995b) Evidence for a defective prophage on the chromosome of Methanobacterium wolfei. FEMS Microbiol Lett 132:85–89PubMedGoogle Scholar
  137. Stupperich E, Fuchs G (1981) Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2. Arch Microbiol 130:294–300Google Scholar
  138. Taylor CD, McBride BC, Wolfe RS, Bryant MP (1974) Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol 120:974–975PubMedCentralPubMedGoogle Scholar
  139. Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312PubMedGoogle Scholar
  140. Thoma C, Frank M, Rachel R, Schmid S, Näther D, Wanner G, Wirth R (2010) The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ Microbiol 10:2785–2795Google Scholar
  141. Tokura M, Tajima K, Ushida KJ (1999) Isolation of Methanobrevibacter sp. as a ciliate-associated ruminal methanogen. J Gen Appl Microbiol 45:43–47PubMedGoogle Scholar
  142. Touzel JP, Conway de Macario E, Nölling J, De Vos WM, Zhilina T, Lysenko AM (1992) DNA relatedness among some thermophilic members of the genus Methanobacterium: emendation of the species Methanobacterium thermoautotrophicum and rejection of Methanobacterium thermoformicicum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol 42:408–411PubMedGoogle Scholar
  143. Tumbula DL, Keshwani J, Shieh J, Whitman WB (1995) Long-term maintenance of methanogenic stock cultures in glycerol. In: DasSarma S, Fleischmann EM (eds) Archaea. A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, pp 85–87Google Scholar
  144. Ufnar JA, Wang SY, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52PubMedGoogle Scholar
  145. Ufnar JA, Wang SY, Ufnar DF, Ellender RD (2007) Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol 73:7118–7121PubMedCentralPubMedGoogle Scholar
  146. van Alebeek G-JWM, Tafazzul G, Kreuwels MJJ, Keltjens JT, Vogels GD (1994) Cyclic 2,3-diphosphoglycerate metabolism in Methanobacterium thermoautotrophicum (strain ΔH): characterization of the synthetase reaction. Arch Microbiol 162:193–198Google Scholar
  147. van de Wijngaard WMH, Creemers J, Vogels GD, van der Drift C (1991) Methanogenic pathways in Methanosphaera stadtmanae. FEMS Microbiol Lett 64:207–211PubMedGoogle Scholar
  148. Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50:43–53PubMedGoogle Scholar
  149. Wayne LG (1994) Actions of the judicial commission of the international committee on systematic bacteriology on requests for opinions published between January 1985 and July 1993. Int J Syst Bacteriol 44:177–178Google Scholar
  150. Weaver GA, Krause JA, Miller TL, Wolin MJ (1986) Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27:698–704PubMedCentralPubMedGoogle Scholar
  151. Weiss A, Jérôme V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173PubMedGoogle Scholar
  152. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 165–207Google Scholar
  153. Winter J, Lerp C, Zabel H-P, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5:457–466Google Scholar
  154. Worakit S, Boone DR, Mah RA, Abdel-Samie M-E, El-Halwag MM (1986) Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382Google Scholar
  155. Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270PubMedCentralPubMedGoogle Scholar
  156. Wright A-DG, Ma X, Obispo NE (2008) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 56:390–394PubMedGoogle Scholar
  157. Yamamoto K, Tachibana A, Davises G, Tanaka T, Takiguchi M, Oi S (1989) Characterization of a thermophilic formate-utilizing methanogen, Methanobacterium thermoformicium strain SF-4. Agric Biol Chem 53:533–534Google Scholar
  158. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  159. Yarza P, Spröer C, Swiderski J, Mrotzek N, Spring S, Tindall BJ, Gronow S, Pukall R, Klenk HP, Lang E, Verbarg S, Crouch A, Lilburn T, Beck B, Unosson C, Cardew S, Moore ERB, Gomila M, Nakagawa Y, Janssens D, De Vos P, Peiren J, Suttels T, Clermont D, Bizet C, Sakamoto M, Iida T, Kudo T, Kosako Y, Oshida Y, Ohkuma M, Arahal DR, Spieck E, Pommerening Roeser A, Figge M, Park D, Buchanan P, Cifuentes A, Munoz R, Euzéby JP, Schleifer KH, Ludwig W, Amann R, Glöckner FO, Rosselló-Móra R (2013) Sequencing orphan species initiative (SOS): filling the gaps in the 16S gene sequence database for all species with validly published names. Syst Appl Microbiol 36:69–73PubMedGoogle Scholar
  160. Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41:543–552PubMedGoogle Scholar
  161. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedCentralPubMedGoogle Scholar
  162. Zellner G, Bleicher K, Braun E, Kneifel H, Tindall BJ, Conway de Macario E, Winter J (1989) Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch Microbiol 151:1–9Google Scholar
  163. Zhilina TN, Ilarionov SA (1984) Characteristics of formate-assimilating methane bacteria and description of Methanobacterium thermoformicium sp. nov. Mikrobiologiya 53:785–790 (English translation: Microbiology 53:647–651)Google Scholar
  164. Zhou X, Meile L, Kreuzer M, Zeitz JO (2013) The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea 2013:106916PubMedCentralPubMedGoogle Scholar
  165. Zhu J, Liu X, Dong X (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61:2974–2978PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations