Advertisement

The Phylum Synergistetes

  • Estelle Jumas-BilakEmail author
  • Hélène Marchandin
Reference work entry

Abstract

The phylum Synergistetes has been characterized in 2009 and currently groups 12 genera and 20 species of Gram-negative, anaerobic bacteria with various morphologies and metabolisms, i.e., Aminiphilus, Aminobacterium, Aminomonas, Anaerobaculum, Cloacibacillus, Dethiosulfovibrio, “Fretibacterium,” Jonquetella, Pyramidobacter, Synergistes, Thermanaerovibrio, and Thermovirga. In addition, the genus Acetomicrobium has to be reclassified as belonging to this phylum. Cells are mainly rods with various shapes and are characterized by their ability to utilize amino acids as source for energy. Low cultivability accounts for the global lack of knowledge on most members of this phylum, and data currently available mainly arise from cultivation-independent studies. It is noteworthy that members of Synergistetes are widely distributed but more usually represent a minor population within inhabited ecosystems. Four types of habitats could be delineated depending on isolate or clone origin, including sludge and wastewater from anaerobic digesters, natural springs, natural seawater and sulfur mats, water related to petroleum and gas production facilities, and host-associated microbiota, Synergistes being more usually recovered from a unique of these site types according to the taxon considered. Although no data are currently available regarding their virulence in different hosts, their recovery in various physiological and pathophysiological conditions witnessed for a probable opportunistic pathogenic behavior.

Keywords

Type Strain Anaerobic Digester Subgingival Plaque Subsea Pipeline Major Cellular Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to sincerely thank several collaborators whose work for phenotypic or genotypic characterization of anaerobic clinical isolates contributed to support the description of the phylum Synergistetes, Jean-Philippe Carlier, Audrey Damay, Bernard Gay, Hélène Jean-Pierre, Isabelle Zorgniotti, and Laurent Roudière.

References

  1. Allison MJ, Hammond AC, Jones RJ (1990) Detection of rumen bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine. Appl Environ Microbiol 56:590–594PubMedCentralPubMedGoogle Scholar
  2. Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522–529Google Scholar
  3. Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1993) In validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 45. Int J Syst Bacteriol 43:398–399Google Scholar
  4. Anderson RC, Anderson TJ, Nisbet DJ, Kibbe AS, Elrod D, Wilkinson G (2001) Drought associated poisoning of cattle in south Texas by the high quality forage legume leucaena leucocephala. Vet Hum Toxicol 43:95–96PubMedGoogle Scholar
  5. Aquino AR, Lima KC, Paiva MS, Rôças IN, Siqueira JF Jr (2011) Molecular survey of atheromatous plaques for the presence of DNA from periodontal bacterial pathogens, archaea and fungi. J Periodontal Res 46:303–309PubMedGoogle Scholar
  6. Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BK (1998) Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250PubMedGoogle Scholar
  7. Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BK (1999a) In validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 71. Int J Syst Bacteriol 49:1325–1326Google Scholar
  8. Baena S, Fardeau ML, Ollivier B, Labat M, Thomas P, Garcia JL, Patel BK (1999b) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982PubMedGoogle Scholar
  9. Baena S, Fardeau ML, Woo TH, Ollivier B, Labat M, Patel BK (1999c) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974PubMedGoogle Scholar
  10. Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BK (2000) Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 50:259–264PubMedGoogle Scholar
  11. Baumgartner A, Thurnheer T, Lüthi-Schaller H, Gmür R, Belibasakis GN (2012) The phylum Synergistetes in gingivitis and necrotizing ulcerative gingivitis. J Med Microbiol 61:1600–1609PubMedGoogle Scholar
  12. Beiko RG (2011) Telling the whole story in a 10,000-genome world. Biol Direct 6:34PubMedCentralPubMedGoogle Scholar
  13. Berlanga M, Paster BJ, Guerrero R (2009) The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host. Int Microbiol 12:227–236PubMedGoogle Scholar
  14. Berlanga M, Paster BJ, Grandcolas P, Guerrero R (2011) Comparison of the gut microbiota from soldier and worker castes of the termite Reticulitermes grassei. Int Microbiol 14:83–93PubMedGoogle Scholar
  15. Bhandari V, Gupta RS (2012) Molecular signatures for the phylum Synergistetes and some of its subclades. Antonie Van Leeuwenhoek 102:517–540PubMedGoogle Scholar
  16. Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376PubMedGoogle Scholar
  17. Cardinali-Rezende J, Debarry RB, Colturato LF, Carneiro EV, Chartone-Souza E, Nascimento AM (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789PubMedGoogle Scholar
  18. Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, Gonçalves RB (2013) Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res 48:30–36PubMedGoogle Scholar
  19. Chaiyapechara S, Rungrassamee W, Suriyachay I, Kuncharin Y, Klanchui A, Karoonuthaisiri N, Jiravanichpaisal P (2012) Bacterial community associated with the intestinal tract of P. monodon in commercial farms. Microb Ecol 63:938–953PubMedGoogle Scholar
  20. Chertkov O, Sikorski J, Brambilla E, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng JF, Han C, Detter JC, Bruce D, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Spring S, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Aminobacterium colombiense type strain (ALA-1). Stand Genomic Sci 15:280–289Google Scholar
  21. Chovatia M, Sikorski J, Schröder M, Lapidus A, Nolan M, Tice H, Glavina Del Rio T, Copeland A, Cheng JF, Lucas S, Chen F, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Detter JC, Brettin T, Rohde M, Göker M, Spring S, Bristow J, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Eisen JA (2009) Complete genome sequence of Thermanaerovibrio acidaminovorans type strain (Su883). Stand Genomic Sci 22:254–261Google Scholar
  22. Cytryn E, Gelfand I, Barak Y, van Rijn J, Minz D (2003) Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system. Environ Microbiol 5:55–63PubMedGoogle Scholar
  23. Cytryn E, van Rijn J, Schramm A, Gieseke A, de Beer D, Minz D (2005) Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system. Appl Environ Microbiol 71:6134–6141PubMedCentralPubMedGoogle Scholar
  24. Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a north Sea oil well. Int J Syst Evol Microbiol 56:1539–1545PubMedGoogle Scholar
  25. Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high-temperature north Sea oil-field. Antonie Van Leeuwenhoek 93:37–49PubMedGoogle Scholar
  26. Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS (2012a) Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 80:671–684PubMedGoogle Scholar
  27. Davis JP, Struchtemeyer CG, Elshahed MS (2012b) Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the barnett shale (Texas, USA). Microb Ecol 64:942–954PubMedGoogle Scholar
  28. de Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG (2006) Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol 21:61–68PubMedGoogle Scholar
  29. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017PubMedCentralPubMedGoogle Scholar
  30. Díaz C, Baena S, Fardeau ML, Patel BK (2007) Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol 57:1914–1918PubMedGoogle Scholar
  31. Díaz-Cárdenas C, López G, Patel BK, Baena S (2010) Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. Int J Syst Evol Microbiol 60:850–853PubMedGoogle Scholar
  32. Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T, Yu WH, Sutcliffe IC, Wade WG (2009) Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum ‘Synergistetes’ isolated from the human oral cavity. Int J Syst Evol Microbiol 59:972–980PubMedCentralPubMedGoogle Scholar
  33. Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipes sinusarabici a novel genus and species of eubacteria occurring in the Atlantis II deep brines of the Red Sea. Arch Microbiol 154:120–126Google Scholar
  34. Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, Sghir A (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘Synergistetes’, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58:2003–2012PubMedGoogle Scholar
  35. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. In: Bergey’s Manual Trust (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Release 5.0. Springer, New York (available at URL: http://www.bergeys.org/outlines.html)
  36. Godon JJ, Morinière J, Moletta M, Gaillac M, Bru V, Delgènes JP (2005) Rarity associated with specific ecological niches in the bacterial world: the Synergistes example. Environ Microbiol 7:213–224PubMedGoogle Scholar
  37. Godoy-Vitorino F, Goldfarb KC, Karaoz U, Leal S, Garcia-Amado MA, Hugenholtz P, Tringe SG, Brodie EL, Dominguez-Bello MG (2012) Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6:531–541PubMedCentralPubMedGoogle Scholar
  38. Göker M, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Spring S, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2012) Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314T). Stand Genomic Sci 25:230–239Google Scholar
  39. Greene AC, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedGoogle Scholar
  40. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185PubMedCentralPubMedGoogle Scholar
  41. Guangsheng C, Plugge CM, Roelofsen W, Houwen FP, Stams AJM (1992) Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate. Arch Microbiol 157:169–175Google Scholar
  42. Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182PubMedCentralPubMedGoogle Scholar
  43. Hammond AC (1995) Leucaena toxicosis and its control in ruminants. J Anim Sci 73:1487–1492PubMedGoogle Scholar
  44. Holdeman LV, Moore WEC (1972) Anaerobe laboratory manual. Virginia, Anaerobe Laboratory, Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  45. Hongoh Y, Sato T, Dolan MF, Noda S, Ui S, Kudo T, Ohkuma M (2007) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276PubMedCentralPubMedGoogle Scholar
  46. Horz HP, Citron DM, Warren YA, Goldstein EJ, Conrads G (2006) Synergistes group organisms of human origin. J Clin Microbiol 44:2914–2920PubMedCentralPubMedGoogle Scholar
  47. Hugenholtz P, Hooper SD, Kyrpides NC (2009) Focus: Synergistetes. Environ Microbiol 11:1327–1329PubMedGoogle Scholar
  48. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214Google Scholar
  49. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB, Ribbons DW (eds) Methods in microbiology. Academic, New York, pp 117–132Google Scholar
  50. Hutter G, Schlagenhauf U, Valenza G, Horn M, Burgemeister S, Claus H, Vogel U (2003) Molecular analysis of bacteria in periodontitis: evaluation of clone libraries, novel phylotypes and putative pathogens. Microbiology 149:67–75PubMedGoogle Scholar
  51. Jones RJ, Lowry JB (1984) Australian goats detoxify the goitrogen 3-hydroxy-4(1H) pyridone (DHP) after rumen infusion from an Indonesian goat. Experientia 40:1435–1436PubMedGoogle Scholar
  52. Jones RJ, Megarrity RG (1986) Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust Vet J 63:259–262PubMedGoogle Scholar
  53. Jumas-Bilak E, Carlier JP, Jean-Pierre H, Citron D, Bernard K, Damay A, Gay B, Teyssier C, Campos J, Marchandin H (2007) Jonquetella anthropi gen. nov., sp. nov., the first member of the candidate phylum ‘Synergistetes’ isolated from man. Int J Syst Evol Microbiol 57:2743–2748PubMedGoogle Scholar
  54. Jumas-Bilak E, Roudière L, Marchandin H (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035PubMedGoogle Scholar
  55. Kevbrin VV, Zavarzin GA (1992) The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology 61:812–817 (English translation of Mikrobiologiya)Google Scholar
  56. Koyanagi T, Sakamoto M, Takeuchi Y, Ohkuma M, Izumi Y (2010) Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J Oral Microbiol 24:2Google Scholar
  57. Krakat N, Schmidt S, Scherer P (2011) Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 102:5692–5701PubMedGoogle Scholar
  58. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338PubMedGoogle Scholar
  59. Kunisawa T (2011) Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison. Antonie Van Leeuwenhoek 99:417–422PubMedGoogle Scholar
  60. Labutti K, Mayilraj S, Clum A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Cheng JF, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Spring S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Permanent draft genome sequence of Dethiosulfovibrio peptidovorans type strain (SEBR 4207). Stand Genomic Sci 3:85–92PubMedCentralPubMedGoogle Scholar
  61. Li RW, Connor EE, Li C, Baldwin Vi RL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14:129–139PubMedGoogle Scholar
  62. Looft T, Levine UY, Stanton TB (2013) Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol 63:1960–1966Google Scholar
  63. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BK, Fardeau ML, Thomas P, Crolet JL, Garcia JL (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824PubMedGoogle Scholar
  64. Mansfield JM, Campbell JH, Bhandari AR, Jesionowski AM, Vickerman MM (2012) Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars. J Oral Maxillofac Surg 70:1507–1514PubMedGoogle Scholar
  65. Marchandin H, Damay A, Roudière L, Teyssier C, Zorgniotti I, Dechaud H, Jean-Pierre H, Jumas-Bilak E (2010) Phylogeny, diversity and host specialization in the phylum Synergistetes with emphasis on strains and clones of human origin. Res Microbiol 161:91–100PubMedGoogle Scholar
  66. Maune MW, Tanner RS (2012) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62:832–838PubMedGoogle Scholar
  67. McSweeney CS, Allison MJ, Mackie RI (1993a) Amino acid utilization by the ruminal bacterium Synergistes jonesii strain 78-1. Arch Microbiol 159:131–135Google Scholar
  68. McSweeney CS, Mackie RI, Odenyo AA, Stahl DA (1993b) Development of an oligonucleotide probe targeting 16S rRNA and its application for detection and quantitation of the ruminal bacterium Synergistes jonesii in a mixed-population chemostat. Appl Environ Microbiol 59:1607–1612PubMedCentralPubMedGoogle Scholar
  69. Menes RJ, Muxí L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 52:157–164PubMedGoogle Scholar
  70. Mnif S, Bru-Adan V, Godon JJ, Sayadi S, Chamkha M (2012) Characterization of the microbial diversity in production waters of mesothermic and geothermic Tunisian oilfields. J Basic Microbiol 53:45–61PubMedGoogle Scholar
  71. Munson MA, Pitt-Ford T, Chong B, Weightman AJ, Wade WG (2002) Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81:761–766PubMedGoogle Scholar
  72. Munson MA, Banerjee A, Watson TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029PubMedCentralPubMedGoogle Scholar
  73. Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50:1611–1619PubMedGoogle Scholar
  74. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711PubMedCentralPubMedGoogle Scholar
  75. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol 102:2219–2227PubMedGoogle Scholar
  76. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783PubMedCentralPubMedGoogle Scholar
  77. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12PubMedGoogle Scholar
  78. Pitluck S, Yasawong M, Held B, Lapidus A, Nolan M, Copeland A, Lucas S, Del Rio TG, Tice H, Cheng JF, Chertkov O, Goodwin L, Tapia R, Han C, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Pukall R, Spring S, Rohde M, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Non-contiguous finished genome sequence of Aminomonas paucivorans type strain (GLU-3). Stand Genomic Sci 3:285–293PubMedCentralPubMedGoogle Scholar
  79. Plugge CM, Stams AJ (2001) Arginine catabolism by Thermanaerovibrio acidaminovorans. FEMS Microbiol Lett 195:259–262PubMedGoogle Scholar
  80. Plugge CM, van Leeuwen JM, Hummelen T, Balk M, Stams AJ (2001) Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch Microbiol 176:29–36PubMedGoogle Scholar
  81. Rees GN, Patel BK, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154PubMedGoogle Scholar
  82. Rice WC, Galyean ML, Cox SB, Dowd SE, Cole NA (2012) Influence of wet distillers grains diets on beef cattle fecal bacterial community structure. BMC Microbiol 12:25PubMedCentralPubMedGoogle Scholar
  83. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714PubMedGoogle Scholar
  84. Rôças IN, Siqueira JF Jr (2005) Detection of novel oral species and phylotypes in symptomatic endodontic infections including abscesses. FEMS Microbiol Lett 250:279–285PubMedGoogle Scholar
  85. Rôças IN, Siqueira JF Jr (2010) Identification of bacteria enduring endodontic treatment procedures by a combined reverse transcriptase-polymerase chain reaction and reverse-capture checkerboard approach. J Endod 36:45–52PubMedGoogle Scholar
  86. Sakamoto M, Siqueira JF Jr, Rocas IN, Benno Y (2008) Molecular analysis of the root canal microbiota associated with endodontic treatment failures. Oral Microbiol Immunol 23:275–281PubMedGoogle Scholar
  87. Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D (2010) Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 14:501–514PubMedGoogle Scholar
  88. Scherr KE, Lundaa T, Klose V, Bochmann G, Loibner AP (2012) Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. J Biotechnol 157:564–572PubMedGoogle Scholar
  89. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42PubMedCentralPubMedGoogle Scholar
  90. Shi R, Zhang Y, Yang W, Xu H (2012) Microbial community characterization of an UASB treating increased organic loading rates of vitamin C biosynthesis wastewater. Water Sci Technol 65:254–261PubMedGoogle Scholar
  91. Soutschek E, Winter J, Schindler F, Kandler O (1984) Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 5:377–390Google Scholar
  92. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  93. Stevenson BS, Drilling HS, Lawson PA, Duncan KE, Parisi VA, Suflita JM (2011) Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure. Environ Microbiol 13:1078–1790PubMedGoogle Scholar
  94. Surkov AV, Böttcher ME, Kuever J (2000) Stable sulfur isotope fractionation during the reduction of thiosulfate by Dethiosulfovibrio russensis. Arch Microbiol 174:448–451PubMedGoogle Scholar
  95. Surkov AV, Dubinina GA, Lysenko AM, Glöckner FO, Kuever J (2001) Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51:327–337PubMedGoogle Scholar
  96. Surkov AV, Böttcher ME, Kuever J (2012) Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp. Isotopes Environ Health Stud 48:65–75PubMedGoogle Scholar
  97. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470PubMedGoogle Scholar
  98. Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164PubMedGoogle Scholar
  99. Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K (2011) Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91:1447–1461PubMedGoogle Scholar
  100. Teyssier C, Marchandin H, Masnou A, Jeannot JL, Simeon de Buochberg M, Jumas-Bilak E (2005) Pulsed-field gel electrophoresis to study the diversity of whole-genome organization in the genus Ochrobactrum. Electrophoresis 26:2898–2907PubMedGoogle Scholar
  101. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106PubMedGoogle Scholar
  102. Vartoukian SR, Palmer RM, Wade WG (2009) Diversity and morphology of members of the phylum “Synergistetes” in periodontal health and disease. Appl Environ Microbiol 75:3777–3786PubMedCentralPubMedGoogle Scholar
  103. Vartoukian SR, Palmer RM, Wade WG (2010) Cultivation of a Synergistetes strain representing a previously uncultivated lineage. Environ Microbiol 12:916–928PubMedCentralPubMedGoogle Scholar
  104. Vartoukian SR, Downes J, Palmer RM, Wade WG (2013) Fretibacterium fastidiosum gen. nov., sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 63:458–463PubMedGoogle Scholar
  105. Vianna ME, Conrads G, Gomes BP, Horz HP (2007) Quantification and characterization of synergistes in endodontic infections. Oral Microbiol Immunol 22:260–265PubMedGoogle Scholar
  106. Wallace JR (2008) Gut microbiology—broad genetic diversity, yet specific metabolic niches. Animal 2:661–668Google Scholar
  107. Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ (2011) Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 77:248–263PubMedGoogle Scholar
  108. Weiss A, Jérôme V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173PubMedGoogle Scholar
  109. Wienemann T, Schmitt-Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, Berthold P (2011) The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst Appl Microbiol 34:542–551PubMedGoogle Scholar
  110. Winter J, Braun E, Zabel HP (1987) Acetomicrobium faecalis sp. nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses. Syst Appl Microbiol 9:71–76Google Scholar
  111. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888PubMedGoogle Scholar
  112. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralPubMedGoogle Scholar
  113. Yamane K, Maki H, Nakayama T, Nakajima T, Nomura N, Uchiyama H, Kitaoka M (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci Biotechnol Biochem 72:2831–2839PubMedGoogle Scholar
  114. Yoshida N, Takahashi N, Hiraishi A (2005) Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl Environ Microbiol 71:4325–4334PubMedCentralPubMedGoogle Scholar
  115. You M, Mo S, Watt RM, Leung WK (2013) Prevalence and diversity of Synergistetes taxa in periodontal health and disease. J Periodontal Res 48:159–168Google Scholar
  116. Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258PubMedGoogle Scholar
  117. Zavarzina DG, Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA, Bonch-Osmolovskaya EA (2000) Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. Int J Syst Evol Microbiol 50:1287–1295PubMedGoogle Scholar
  118. Zhao H, Yang D, Woese CR, Bryant MP (1993) Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int J Syst Bacteriol 43:278–286PubMedGoogle Scholar
  119. Zhao G, Ma F, Wei L, Chua H (2012) Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process. Bioresour Technol 113:83–88PubMedGoogle Scholar
  120. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, Harmsen HJ (2010) Oral biofilm architecture on natural teeth. PLoS One 5:e9321PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.UMR5119 ECOSYM, Equipe Pathogènes et Environnements, UFR des Sciences pharmaceutiques et BiologiquesUniversité Montpellier 1MontpellierFrance
  2. 2.Laboratoire d’Hygiène hospitalièreCentre Hospitalier Régional Universitaire de MontpellierMontpellierFrance
  3. 3.Laboratoire de BactériologieCentre Hospitalier Régional Universitaire de MontpellierMontpellierFrance

Personalised recommendations