The Family Caldisphaeraceae

  • Takashi ItohEmail author
Reference work entry


The family Caldisphaeraceae, represented by a sole genus Caldisphaera, is a member of the order Acidilobales, class Thermoprotei. The genus houses a single validated species C. lagunensis: however, a non-validated species “C. draconis” is also described. Both are extremely thermophilic, but not hyperthermophilic, acidophilic, heterotrophic, anaerobic, coccoid archaea. They dwell in acidic terrestrial hot springs. Phylogenetically, the family is distantly related to members of the neighbor family, Acidilobaceae, whose members are all hyperthermophilic.


Sole Genus Thermal Denaturation Temperature Pine Needle Litter Cyclopentyl Ring Thermoacidophilic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antranikian G, Egorova K (2007) Extremophiles, a unique resource of biocatalysts for industrial biotechnology. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM, Washington, DC, pp 361–406CrossRefGoogle Scholar
  2. Aoshima M, Nishibe Y, Hasegawa M, Yamagishi A, Oshima T (1996) Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12. Gene 180:183–187PubMedCrossRefGoogle Scholar
  3. Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey GG (2007) Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl Environ Microbiol 73:6669–6677PubMedCentralPubMedCrossRefGoogle Scholar
  4. Galtier N, Lobry JR (1997) Relationships between genomic G + C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636PubMedCrossRefGoogle Scholar
  5. Hamana K, Hosoya R, Itoh T (2007) Polyamine analysis of methanogens, thermophiles and extreme halophiles belonging to the domain Archaea. J Jpn Soc Extremophiles 6:23–29CrossRefGoogle Scholar
  6. Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16:414–419PubMedCrossRefGoogle Scholar
  7. Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms. Academic, London, pp 69–81Google Scholar
  8. Itoh T, Suzuki K, Sanchez PC, Nakase T (2003) Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 53:1149–1154PubMedCrossRefGoogle Scholar
  9. Kato S, Itoh T, Yamagishi A (2011) Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal16S rRNA genes. FEMS Microbiol Lett 319:34–43PubMedCrossRefGoogle Scholar
  10. Ng C-C, Chang C-C, Shyu Y-T (2005) Archaeal community revealed by 16s rRNA and fluorescence in situ hybridization in a sulphuric hydrothermal hot spring, northern Taiwan World. J Microbiol Biotechnol 21:933–939CrossRefGoogle Scholar
  11. Perevalova AA, Kolganova TV, Birkeland N-K, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628PubMedCentralPubMedCrossRefGoogle Scholar
  12. Prokofeva MI, Miroshnichenko ML, Kostrikina NA, Chernyh NA, Kuznetsov BB, Tourova TP, Bonch-Osmolovskaya EA (2000) Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50:2001–2008PubMedCrossRefGoogle Scholar
  13. Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA (2009) Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol 59:3116–3122PubMedCrossRefGoogle Scholar
  14. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  15. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J-F, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H-P, Eisen JA (2009) A phylogeny-driven genomic encyclopedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  16. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Japan Collection of MicroorganismsRIKEN BioResource CenterTsukuba, IbarakiJapan

Personalised recommendations