The Family Thermoproteaceae

  • Takashi ItohEmail author
Reference work entry


The family Thermoproteaceae of the order Thermoproteales, class Thermoprotei, is represented by rod-shaped, strictly anaerobic, microaerophilic or facultatively aerobic, moderate acidophilic to neutrophilic, hyperthermophilic or extremely thermophilic archaea. Cells measure 0.4–0.7 μm thickness and mostly 1–20 μm long. Sometimes they bear terminal globular bodies, showing the “golf club”-like cell morphology. They are facultative chemolithoautotrophs or obligate chemoorganotrophs that can respire sulfur, oxygen, nitrate, ferric iron, or other toxic metals such as arsenate. They thrive in terrestrial acidic and neutral hot springs and mud pots, as well as coastal, geothermally heated marine water holes. The family is constituted of five genera, Thermoproteus, Caldivirga, Pyrobaculum, Thermocladium, and Vulcanisaeta. They can be differentiated by several phenetic properties, such as growth temperature and pH, cell motility, and DNA G+C content. Their whole genomes of strains have been sequenced indicating their unique genetic features.


Golf Club Yellowstone National Park Muramic Acid Glycerol Ether Geothermal Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn D-G, Kim S-I, Rhee J-K, Kim K-P, Pan J-G, Oh J-W (2006) TTSV1, a new virus-like particle isolated from the hyperthermophilic crenarchaeote Thermoproteus tenax. Virology 351:280–290PubMedCrossRefGoogle Scholar
  2. Amo T, Paje MLF, Inagaki A, Ezaki S, Atomi H, Imanaka T (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121PubMedCentralPubMedCrossRefGoogle Scholar
  3. Antranikian G, Egorova K (2007) Extremophiles, a unique resource of biocatalysts for industrial biotechnology. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM press, Washington, DC, pp 361–406CrossRefGoogle Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  5. Barros JA (1995) Isolation, growth, and maintenance of hyperthermophiles. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds) Archaea, a laboratory manual, thermophiles. Cold Spring Harbor Laboratory Press, Plainview, pp 15–23Google Scholar
  6. Baumeister W, Wildhaber I, Phipps BM (1989) Principles of organization in eubacterial and archaebacterial surface proteins. Can J Microbiol 35:215–227PubMedCrossRefGoogle Scholar
  7. Bernick DL, Karplus K, Lui LM, Coker JKC, Murphy JN, Chan PP, Cozen AE, Lowe TM (2012) Complete genome sequence of Pyrobaculum oguniense. Stand Genomic Sci 6:336–345PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernych NA, Zavarzin GA (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559CrossRefGoogle Scholar
  9. Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14:274–281PubMedCrossRefGoogle Scholar
  10. Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660PubMedCrossRefGoogle Scholar
  11. Burggraf S, Larsen N, Woese CR, Stetter KO (1993) An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 90:2457–2550Google Scholar
  12. Chan PP, Cozen AE, Lowe TM (2013) Reclassification of Thermoproteus neutrophilus Stetter and Zillig 1989 as Pyrobaculum neutrophilum comb. nov. based on phylogenetic analysis. Int J Syst Evol Microbiol 63:751–754PubMedCrossRefGoogle Scholar
  13. Dalgaard JZ, Garrett RA (1992) Protein-coding introns from the 23S rRNA encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene 121:103–110Google Scholar
  14. Dalgaard JZ, Garrett RA, Belfort M (1993) A site specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci U S A 90:5414–5417PubMedCentralPubMedCrossRefGoogle Scholar
  15. Ehrhardt CJ, Haymon RM, Lamontagne MG, Holden PA (2007) Evidence for hydrothermal archaea within the basaltic flanks of the East Pacific Rise. Environ Microbiol 9:900–912PubMedCrossRefGoogle Scholar
  16. Ettema TJG, Lindås A-C, Bernander R (2011) An actin-based cytoskeleton in archaea. Mol Microbiol 80:1052–1061PubMedCrossRefGoogle Scholar
  17. Fischer F, Zillig W, Stetter KO, Schreber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedCrossRefGoogle Scholar
  18. Fitz-Gibbon ST, Ladner H, Kim U-J, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 99:984–989PubMedCentralPubMedCrossRefGoogle Scholar
  19. Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, Kanai A (2009) Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci U S A 106:2683–2687PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gambacorta A, Trincone A, Nicolaus B, Lama L, de Rosa M (1994) Unique features of lipids of archaea. Syst Appl Microbiol 16:518–527CrossRefGoogle Scholar
  21. Gumerov VM, Mardanov AV, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2011) Complete genome sequence of “Vulcanisaeta moutnovskia” strain 768–28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta. J Bacteriol 193:2355–2356PubMedCentralPubMedCrossRefGoogle Scholar
  22. Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587PubMedCrossRefGoogle Scholar
  23. Hamana K, Itoh T (2001) Polyamines of the hyperthermophilic archaebacteria belonging to the genera Thermococcus and Methanothermus and two new genera Caldivirga and Palaeococcus. Microbios 104:105–114PubMedGoogle Scholar
  24. Hamana K, Hamana H, Niitsu M, Samejima K, Itoh T (1996) Distribution of long linear and branched polyamines in thermophilic eubacteria and hyperthermophilic archaebacteria. Microbios 85:19–33Google Scholar
  25. Hamana K, Hamana H, Shinozawa T, Niitsu M, Samejima K, Itoh T (1999) Polyamines of the thermophilic eubacteria belonging to the genera Aquifex, Thermodesulfobacterium, Thermus and Meiothermus, and the thermophilic archaebacteria belonging to the genera Sulfurisphaera, Sulfophobococcus, Stetteria, Thermocladium, Pyrococcus, Thermococcus, Methanopyrus and Methanothermus. Microbios 97:117–130Google Scholar
  26. Hamana K, Tanaka T, Hosoya R, Niitsu M, Itoh T (2003) Cellular polyamines of the acidophilic, thermophilic and thermoacidophilic archaebacteria, Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vulcanisaeta. J Gen Appl Microbiol 49:287–293PubMedCrossRefGoogle Scholar
  27. Hamana K, Hosoya R, Itoh T (2007) Polyamine analysis of methanogens, thermophiles and extreme halophiles belonging to the domain Archaea. J Jpn Soc Extremophiles 6:23–29CrossRefGoogle Scholar
  28. Häring M, Peng X, Brügger K, Rachel R, Stetter KO, Garrett RA, Prangishvili D (2004) Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology 323:233–242PubMedCrossRefGoogle Scholar
  29. Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms. Academic, London, pp 69–81Google Scholar
  30. Horn C, Paulmann B, Kerlen G, Junker N, Huber H (1999) In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J Bacteriol 181:5114–5118PubMedCentralPubMedGoogle Scholar
  31. Huber R, Stetter KO (1992) The order Thermoproteales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 677–683Google Scholar
  32. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149:95–101CrossRefGoogle Scholar
  33. Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314PubMedCrossRefGoogle Scholar
  34. Huber H, Huber R, Stetter KO (2006) The order Thermoproteales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York, pp 10–22CrossRefGoogle Scholar
  35. Itoh T, Suzuki K-I, Nakase T (1998a) Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48:879–887PubMedCrossRefGoogle Scholar
  36. Itoh T, Suzuki K-I, Nakase T (1998b) Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus. Arch Microbiol 170:155–161PubMedCrossRefGoogle Scholar
  37. Itoh T, Suzuki K-I, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163PubMedCrossRefGoogle Scholar
  38. Itoh T, Suzuki K-I, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104PubMedCrossRefGoogle Scholar
  39. Itoh T, Nomura N, Sako Y (2003) Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications. Extremophiles 7:229–233PubMedGoogle Scholar
  40. Janekovic D, Wunderl S, Holz I, Zillig W, Gierl A, Neumann H (1983) TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax. Mol Gen Genet 192:39–45CrossRefGoogle Scholar
  41. Kashefi K, Lovely DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 °C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056PubMedCentralPubMedCrossRefGoogle Scholar
  42. Kato S, Itoh T, Yamagishi A (2011) Archaeal diversity in a terrestrial acidic field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiol Lett 319:34–43PubMedCrossRefGoogle Scholar
  43. Kneifel H, Stetter KO, Andreesen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245CrossRefGoogle Scholar
  44. König H (1994) Analysis of archaeal cell envelopes. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 85–119Google Scholar
  45. König H, Stetter KO (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309CrossRefGoogle Scholar
  46. Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA, Tringe SG, Kocar BD, Borch T, Inskeep WP (2012) Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms. Front Microbiol 3:109PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kristjansson JK, Stetter KO (1991) Thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, London, pp 1–18Google Scholar
  48. Lal LB, Chan PP, Cozen AE, Bernick DL, Brown JW, Gopalan V, Lowe TM (2010) Discovery of a minimal form of DNase P in Pyrobaculum. Proc Natl Acad Sci U S A 107:22493–22498CrossRefGoogle Scholar
  49. Langworthy T, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–257CrossRefGoogle Scholar
  50. Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128PubMedCrossRefGoogle Scholar
  51. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of crenarchaeota: unity among diversity. J Bacteriol 190:5362–5367PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lykke-Andersen J, Garrett RA (1994) Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. J Mol Biol 243:846–855PubMedCrossRefGoogle Scholar
  53. Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD, Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99PubMedCrossRefGoogle Scholar
  54. Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA, Ravin NV (2011a) Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka. Extremophiles 15:365–372PubMedCrossRefGoogle Scholar
  55. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2011b) Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768–20. J Bacteriol 193:3156–3157PubMedCentralPubMedCrossRefGoogle Scholar
  56. Mardanov AV, Gumerov VM, Slobodkina GB, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2012) Complete genome sequence of strain 1980, a crenarchaeon of the genus Pyrobaculum able to grow with various electron acceptors. J Bacteriol 194:727–728PubMedCentralPubMedCrossRefGoogle Scholar
  57. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acid Res 40:D115–D122PubMedCentralPubMedCrossRefGoogle Scholar
  58. Mavromatis K, Sikorski J, Pabst E, Teshima H, Lapidus A, Lucas S, Nolan M, Glavina Del Rio T, Cheng J-F, Bruce D, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Rohde M, Spring S, Göker M, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2010) Complete genome sequence of Vulcanisaeta distributa type strain (IC-017T). Stand Genomic Sci 3:117–125PubMedCentralPubMedCrossRefGoogle Scholar
  59. Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054PubMedCentralPubMedGoogle Scholar
  60. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227CrossRefGoogle Scholar
  61. Mirete S, de Figueras CG, González-Pastor JE (2011) Diversity of Archaea in Icelandic hot springs based on 16S rRNA and chaperonin genes. FEMS Microbiol Ecol 77:15–175CrossRefGoogle Scholar
  62. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454PubMedGoogle Scholar
  63. Niederberger TD, Ronimus RS, Morgan HW (2008) The microbial ecology of a high-temperature near-neutral spring situated in Rotorua, New Zealand. Microbiol Res 163:594–603PubMedCrossRefGoogle Scholar
  64. Paytubi S, McMahon SA, Graham S, Liu H, Botting CH, Makarova KS, Koonin EV, Naismith JH, White MF (2012) Displacement of the canonical single-stranded DNA-binding protein in the Thermoproteales. Proc Natl Acad Sci U S A 109:E398–E405PubMedCentralPubMedCrossRefGoogle Scholar
  65. Perevalova AA, Kolganova TV, Birkeland N-K, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota Representatives in Terrestrial Hot Springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628PubMedCentralPubMedCrossRefGoogle Scholar
  66. Prokofeva MI, Kublanov IV, Nercessian O, Tourova TP, Kolganova TV, Lebedinsky AV, Bonch-Osmolovskaya EA, Spring S, Jeanthon C (2005) Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9:437–448PubMedCrossRefGoogle Scholar
  67. Ramos-Vera WH, Berg IA, Fuchs G (2009) Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J Bacteriol 191:4286–4297PubMedCentralPubMedCrossRefGoogle Scholar
  68. Ramos-Vera WH, Labonté V, Weiss M, Pauly J, Fuchs G (2010) Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus. J Bacteriol 192:5329–5340PubMedCentralPubMedCrossRefGoogle Scholar
  69. Sako Y, Nunoura T, Uchida A (2001) Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C. Int J Syst Evol Microbiol 51:303–309PubMedGoogle Scholar
  70. Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57PubMedCrossRefGoogle Scholar
  71. Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers S-V, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, von Jan M, Makarova KS, Klenk H-P, Schuster SC, Hensel R (2011) The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the crenarchaeota. PLoS One 6:e24222PubMedCentralPubMedCrossRefGoogle Scholar
  72. Siering PL, Clarke JM, Wilson MS (2006) Geochemical and biological diversity of acidic, hot springs in Lassen Volcanic National Park. Geomicrobiol J 23:129–141CrossRefGoogle Scholar
  73. Sonobe S, Aoyama K, Suzuki C, Saito K, Nagata K, Shimmen T, Nagata Y (2010) Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission. Extremophiles 14:403–407PubMedCrossRefGoogle Scholar
  74. Sugahara J, Kikuta K, Fujishima K, Yachie N, Tomita M, Kanai A (2008) Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order Thermoproteales. Mol Biol Evol 25:2709–2716PubMedCrossRefGoogle Scholar
  75. Thurl S, Schäfer W (1988) Lipids from the sulphur-dependent archaebacterium Thermoproteus tenax. Biochim Biophys Acta 961:253–261CrossRefGoogle Scholar
  76. Thurl S, Buhrow I, Schäfer W (1985) New types of menaquinones from the thermophilic archaebacterium Thermoproteus tenax. Biol Chem Hoppe-Seyler 366:1079–1083PubMedCrossRefGoogle Scholar
  77. Tindall BJ (1989) Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Lett 60:251–254CrossRefGoogle Scholar
  78. Tindall BJ, Wray V, Huber R, Collins MD (1991) A novel, fully saturated cyclic menaquinone in the archaebacterium Pyrobaculum organotrophum. Syst Appl Microbiol 14:218–221CrossRefGoogle Scholar
  79. Trincone A, Nicolaus B, Palmieri G, de Rosa M, Huber R, Huber G, Stetter KO, Gambacorta A (1992) Distribution of complex and core lipids within new hyperthermophilic members of the Archaea domain Syst. Appl Microbiol 15:11–17CrossRefGoogle Scholar
  80. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926PubMedCentralPubMedGoogle Scholar
  81. Wiegel J (1986) Methods for isolation and study of thermophiles. In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley, New York, pp 17–37Google Scholar
  82. Wolf YI, Makarova KS, Yutin N, Koonin EV (2012) Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol Direct 7:46PubMedCentralPubMedCrossRefGoogle Scholar
  83. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  84. Yokobori S, Itoh T, Yoshinari S, Nomura N, Sako Y, Yamagishi A, Oshima T, Kita K, Watanabe Y (2009) Gain and loss of an intron in a protein-coding gene in Archaea: the case of an archaeal RNA pseudouridine synthase gene. BMC Evol Biol 9:98CrossRefGoogle Scholar
  85. Zillig W (1989a) Order II. Thermoproteales Zillig and Stetter 1982, 267VP (effective publication Zillig and Stetter in Zillig, Stetter, Shäfer, Janekovic, Wunderl, Holz and Palm 1981, 224). In: Staley HT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, p 2240Google Scholar
  86. Zillig W (1989b) Genus I. Thermoproteus Zillig and Stetter 1982, 267VP (effective publication Zillig and Stetter in Zillig, Stetter, Shäfer, Janekovic, Wunderl, Holz and Palm 1981, 225). In: Staley HT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, p 2241Google Scholar
  87. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralbl Mikrobiol Parasitenkd Infektionskr Hyg Abt 1 Orig C2:205–227Google Scholar
  88. Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig C3:304–317Google Scholar
  89. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk H-P (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Japan Collection of MicroorganismsRIKEN BioResource CenterTsukuba, IbarakiJapan

Personalised recommendations