Advertisement

The Family Methanopyraceae

  • Aharon Oren
Reference work entry

Abstract

The family Methanopyraceae currently consists of a single genus with a single species: Methanopyrus kandleri. It is a rod-shaped chemolithoautotrophic methanogenic archaeon that grows optimally at 98 °C and grows up to 110 °C and possibly higher under high hydrostatic pressure, making it the most extreme thermophile among the methanogens. No growth is observed below 84 °C. Strains of M. kandleri were isolated from marine hydrothermal vent systems. The organism contains 2,3-di-O-phytanyl-sn-glycerol and 2,3-di-O-geranylgeranyl-sn-glycerol lipids. In 16S rRNA phylogenetic trees, it forms a very deep branch near the root of the Archaea, remote from the other lineages of methanogens. However, in trees based on concatenated alignments of ribosomal proteins or proteins involved in transcription, M. kandleri consistently groups with other methanogens, suggesting that the methanogens are a monophyletic group of Archaea.

Keywords

High Hydrostatic Pressure Okinawa Trough Hydrothermal Field Deep Branch Reverse Gyrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Breitung J, Börner G, Scholz S, Linder D, Stetter KO, Thauer RK (1992) Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. Eur J Biochem 210:971–981PubMedCrossRefGoogle Scholar
  2. Brochier C, Forterre P, Gribaldo S (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 5:R17PubMedCentralPubMedCrossRefGoogle Scholar
  3. Burggraf S, Stetter KO, Rouviere P, Woese CR (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst Appl Microbiol 14:346–351PubMedCrossRefGoogle Scholar
  4. Chen J, Ding Y, Xu W (2013) Comparative analysis of metabolic networks in mesophilic and thermophilic archaea methanogens based on modularity. J Biol Syst 21:1350015CrossRefGoogle Scholar
  5. Garrity GM, Holt JG (2001) Class VII. Methanopyri class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, p 353Google Scholar
  6. Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst Appl Microbiol 16:165–169CrossRefGoogle Scholar
  7. Hafenbradl D, Keller M, Stetter KO (1996) Lipid analysis of Methanopyrus kandleri. FEMS Microbiol Lett 136:199–202CrossRefGoogle Scholar
  8. Hamana K, Hamana H, Shinozawa T, Niitsu M, Samejima K, Itoh T (1999) Polyamines of the thermophilic eubacteria belonging to the genera Aquifex, Thermodesulfobacterium, Thermus and Meiothermus, and the thermophilic archaebacteria Sulfurisphaera, Sulfophobococcus, Stetteria, Thermocladium, Pyrococcus, Thermococcus, Methanopyrus and Methanothermus. Microbios 97:117–130Google Scholar
  9. Huber R, Stetter KO (2001a) Order I. Methanopyrales ord. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, p 353Google Scholar
  10. Huber R, Stetter KO (2001b) Family I. Methanopyraceae fam. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, p 353Google Scholar
  11. Huber R, Stetter KO (2001c) Genus I. Methanopyrus Kurr, Huber, König, Jannasch, Fricke, Trincone, Kristjansson and Stetter 1992, 327VP (Effective publication: Kurr, Huber, König, Jannasch, Fricke, Trincone, Kristjansson and Stetter 1991, 245). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 353–355Google Scholar
  12. Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342:833–834CrossRefGoogle Scholar
  13. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  14. Luo H, Sun Z, Arndt W, Shi J, Friedman R, Tang J (2009) Gene order phylogeny and the evolution of methanogens. PLoS One 4:e6069PubMedCentralPubMedCrossRefGoogle Scholar
  15. Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902PubMedCentralPubMedGoogle Scholar
  16. Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ Microbiol 5:492–502PubMedCrossRefGoogle Scholar
  17. Nishihara M, Morii H, Matsuno K, Ohga M, Stetter KO, Koga Y (2002) Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri. Archaea 1:123–131PubMedCentralPubMedCrossRefGoogle Scholar
  18. Nölling J, Elfner A, Palmer JR, Steigerwald VJ, Pihl TD, Lake JA, Reeve JN (1996) Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46:1170–1173PubMedCrossRefGoogle Scholar
  19. Oren A (2014a) Family Methanothermaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn, A handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New YorkGoogle Scholar
  20. Oren A (2014b) Family Methanocaldococcaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn, A handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New YorkGoogle Scholar
  21. Oren A (2014c) Family Methermicoccaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn, A handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New YorkGoogle Scholar
  22. Rivera MC, Lake JA (1996) The phylogeny of Methanopyrus kandleri. Int J Syst Bacteriol 46:348–351PubMedCrossRefGoogle Scholar
  23. Rospert S, Breitung J, Ma K, Schwörer B, Zirngibl C, Thauer RK, Linder D, Huber R, Stetter KO (1991) Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri. Arch Microbiol 156:49–55PubMedCrossRefGoogle Scholar
  24. Sauerwald A, Sitaramaiah D, McCloskey JA, Söll D, Crain PF (2005) N 6-Acetyladenosine: a new modified nucleoside from Methanopyrus kandleri tRNA. FEBS Lett 579:2807–2810PubMedCrossRefGoogle Scholar
  25. Shima S, Thauer RK (2001) Tetrahydromethanopterin-specific enzymes from Methanopyrus kandleri. In: Adams MWW, Kelly RM (eds) Hyperthermophilic enzymes B, vol 331, Methods in enzymology. Academic, San Diego, pp 317–353CrossRefGoogle Scholar
  26. Shima S, Hérault DA, Berkessel A, Thauer RK (1998) Activation and thermostabilization effects of cyclic 2,3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch Microbiol 170:469–472PubMedCrossRefGoogle Scholar
  27. Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sprott GD, Agnew BJ, Patel GB (1997) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 43:467–476CrossRefGoogle Scholar
  29. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  30. Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004) Spatial distribution of marine Crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413PubMedCentralPubMedCrossRefGoogle Scholar
  31. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954PubMedCentralPubMedCrossRefGoogle Scholar
  32. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, A handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New York, pp 165–207CrossRefGoogle Scholar
  33. Xue H, Ng S-K, Tong K-L, Wong JT-F (2005) Congruence for evidence for a Methanopyrus-proximal root of life based on transfer RNA and aminoacyl-tRNA synthetase genes. Gene 360:120–130PubMedCrossRefGoogle Scholar
  34. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  35. Yu Z (2010) Optimization of PCR amplification for sensitive capture of Methanopyrus isoleucyl-tRNA synthetase gene in environmental samples. Ann Microbiol 60:757–762CrossRefGoogle Scholar
  36. Yu Z, Takai K, Slesarev A, Xue H, Wong JT-F (2009) Search for primitive Methanopyrus based on genetic distance between Val- and Ile-tRNA synthetases. J Mol Evol 69:386–394PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations