The Family Thermoplasmataceae

  • Anna-Louise Reysenbach
  • Kristen Brileya
Reference work entry


The genus Thermoplasma is the only described genus of the family Thermoplasmataceae and is represented by two species, T. volcanium and T. acidophilum. These facultative aerobes morphologically resemble bacterial mycoplasmas in that they do not have a cell wall or S-layer and form colonies that have a “fried-egg” appearance on agar. The Thermoplasma are obligate thermoacidophilic heterotrophs, growing optimally at 60 °C and pH 2, and are motile pleomorphic cocci. Both species genomes have been sequenced, providing additional insight to their thermoacidophilic lifestyle. Although T. acidophilum is a Euryarchaeota, it shares 58 % gene homology to the crenarchaeote Sulfolobus solfataricus, likely a result of adaptations and lateral gene transfer events due to their shared ecological niche. 16S rRNA gene sequences related to Thermoplasmataceae have been found in terrestrial solfataras, deep-sea hydrothermal vents, and several other environments, suggesting a broad niche range for this family and its relatives in the order Thermoplasmatales.


Acid Mine Drainage Base Excision Repair Subgingival Plaque Fructose Bisphosphate Reverse Gyrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Darland G, Brock TD, Samsonoff W, Conti SF (1970) A Thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170:1416–1418PubMedCrossRefGoogle Scholar
  2. Flores GE, Shakya M, Meneghin J, Yang ZK, Seewald JS, Geoff Wheat C, Podar M, Reysenbach A-L (2012) Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. Geobiology 10:333–346PubMedCrossRefGoogle Scholar
  3. Horz H-P, Seyfarth I, Conrads G (2012) McrA and 16S rRNA gene analysis suggests a novel lineage of Archaea phylogenetically affiliated with Thermoplasmatales in human subgingival plaque. Anaerobe 18:373–377PubMedCrossRefGoogle Scholar
  4. Huber H, Stetter KO (2006) Thermoplasmatales. In: The prokaryotes. Springer, New York, pp 101–112CrossRefGoogle Scholar
  5. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97:14257–14262PubMedCentralPubMedCrossRefGoogle Scholar
  6. Langworthy TA (1977) Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta 487:37–50PubMedCrossRefGoogle Scholar
  7. Langworthy TA (1985) Lipids of Archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, Orlando, pp 459–497Google Scholar
  8. Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–275CrossRefGoogle Scholar
  9. Langworthy TA, Smith PF (1989) Group IV: cell wall-less archaeobacteria. In: Staley JT, Bryant MP, Pfenning N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3, 1st edn. Williams and Wilkins, Baltimore, pp 2233–2236Google Scholar
  10. Moen MN, Knaevelsrud I, Haugland GT, Grosvik K, Birkeland NK, Klungland A, Bjelland S (2011) Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair. J Bacteriol 193:4495–4508PubMedCentralPubMedCrossRefGoogle Scholar
  11. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428PubMedCrossRefGoogle Scholar
  12. Reysenbach A-L (2001) Class IV. Thermoplasmata. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 335–340Google Scholar
  13. Reysenbach A-L, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447PubMedCrossRefGoogle Scholar
  14. Ruepp A, Graml W, Santos-Martinez ML, Koretle KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513PubMedCrossRefGoogle Scholar
  15. Sanchez-Andrea I, Rodriguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093PubMedCentralPubMedCrossRefGoogle Scholar
  16. Segerer AH, Stetter KO, Klink F (1986) Novel facultatively aerobic sulfur-dependent archaebacteria. In: Kandler O, Zillig W (eds) Archaebacteria. Verlag, Stuttgart, p 430Google Scholar
  17. Segerer A, Langworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10:161–171CrossRefGoogle Scholar
  18. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  19. Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G, Personne ́ JC, Hèry M, Elbaz-Poulichet F, Bertin PN, Bruneel O (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16:645–657PubMedCrossRefGoogle Scholar
  20. Wemheuer B, Wemheuer F, Daniel R (2012) RNA-based assessment of diversity and composition of active archaeal communities in the German Bight. Archaea 2012:1–8CrossRefGoogle Scholar
  21. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  22. Yasuda M, Yamagishi A, Oshima T (1995) The plasmids found in isolates of the acidothermophilic archaebacterium Thermoplasma acidophilum. FEMS Microbiol Lett 128:157–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiologyPortland State UniversityPortlandUSA

Personalised recommendations