The Order Thermococcales and the Family Thermococcaceae

  • Gerrit J. Schut
  • Gina L. Lipscomb
  • Yejun Han
  • Jaspreet S. Notey
  • Robert M. Kelly
  • Michael M. W. Adams
Reference work entry


Thermococcaceae, the only family within the order Thermococcales, consists of three genera, Pyrococcus, Thermococcus, and Palaeococcus. Virtually all have been isolated from hydrothermal marine vents. More than 30 species of Thermococcus and Pyrococcus have been described, and 17 genome sequences are currently available. So far only three Palaeococcus species have been isolated. The three genera are distinguished by their temperature optima for growth, which are typically near 100 °C, 85 °C, and 75 °C for species of Pyrococcus, Thermococcus, and Palaeococcus, respectively. All members of the Thermococcales are strictly anaerobic heterotrophs and are characterized by their ability to grow above 80 °C using peptides and elemental sulfur as the carbon and energy sources. Many are also able to utilize a wide variety of simple and complex carbohydrates. Several species have been extensively studied in terms of their primary metabolic pathways, and genetic systems have been developed for Pyrococcus furiosus and Thermococcus kodakarensis. Some members of the Thermococcales are among the best studied of all of the so-called hyperthermophiles, which are organisms that have an optimum growth temperature of at least 80 °C.


Artificial Seawater Serum Bottle Okinawa Trough Genome Shuffling Ribulose Monophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the US Department of Energy ARPA-E Electrofuels Program (DE-AR0000081 to MWWA and RMK), from the DOE GTL Program (DG-FG02-08ER64687 to RMK), and from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the DOE (DE-FG05-95ER20175 to MWWA).


  1. Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10:231–240PubMedGoogle Scholar
  2. Adams MWW, Holden JF, Menon AL, Schut GJ, Grunden AM et al (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:716–724PubMedCentralPubMedGoogle Scholar
  3. Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426PubMedGoogle Scholar
  4. Albers SV, Koning SM, Konings WN, Driessen AJ (2004) Insights into ABC transport in archaea. J Bioenerg Biomembr 36:5–15PubMedGoogle Scholar
  5. Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003) Palaeococcus heigesonii sp nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179:394–401PubMedGoogle Scholar
  6. Andersen MR, Livak KJ, Broomer A, Chen C (2009) Ligation and amplification reactions for determining target molecules, EP Patent 1727913Google Scholar
  7. Andronopoulou E, Vorgias CE (2004) Isolation, cloning, and overexpression of a chitinase gene fragment from the hyperthermophilic archaeon Thermococcus chitonophagus semi-denaturing purification of the recombinant peptide and investigation of its relation with other chitinases. Protein Expr Purif 35:264–271PubMedGoogle Scholar
  8. Ankenbauer W, Bonch-Osmolovskaya E, Ebenbichler C, Angerer B, Schmitz-Agheguian G et al. (1998) Thermostable nucleic acid polymerase from Thermococcus gorgonarius, United States Patent CA2,267,101Google Scholar
  9. Antranikian G, Klingeberg M (1997) Thermostable protease from Thermococcus, United States Patent US005643777AGoogle Scholar
  10. Arab H, Volker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 50(Pt 6):2101–2108PubMedGoogle Scholar
  11. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267PubMedCentralPubMedGoogle Scholar
  12. Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ et al (2012) H2 production from CO, formate or starch using the hyperthermophilic archaeon Thermococcus onnurineus. Biotechnol Lett 34:75–79PubMedGoogle Scholar
  13. Baker SE, Hopkins RC, Blanchette CD, Walsworth VL, Sumbad R et al (2009) Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. J Am Chem Soc 131:7508–7509PubMedGoogle Scholar
  14. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791PubMedCentralPubMedGoogle Scholar
  15. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  16. Balint B, Bagi Z, Toth A, Rakhely G, Perei K et al (2005) Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410PubMedGoogle Scholar
  17. Barbier G, Godfroy A, Meunier JR, Querellou J, Cambon MA et al (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 49(Pt 4):1829–1837PubMedGoogle Scholar
  18. Basen M, Sun J, Adams MW (2012) Engineering a hyperthermophilic archaeon for temperature-dependent product formation. MBio 3:e00053-12PubMedCentralPubMedGoogle Scholar
  19. Bashir Q, Rashid N, Jamil F, Imanaka T, Akhtar M (2009) Highly thermostable l-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis. J Biochem 146:95–102PubMedGoogle Scholar
  20. Bauer MW, Halio SB, Kelly RM (1996a) Proteases and glycosyl hydrolases from hyperthermophilic microorganisms. Adv Protein Chem 48:271–310PubMedGoogle Scholar
  21. Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996b) Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271:23749–23755PubMedGoogle Scholar
  22. Bauer MW, Bauer SH, Kelly RM (1997) Purification and characterization of a proteasome from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 63:1160–1164PubMedCentralPubMedGoogle Scholar
  23. Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ et al (1999) An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1– > 3), (1– > 4)-beta-d-glucans and cellulose. J Bacteriol 181:284–290PubMedCentralPubMedGoogle Scholar
  24. Bezsudnova EY, Kovalchuk MV, Mardanov AV, Poliakov KM, Popov VO et al (2009) Overexpression, purification and crystallization of a thermostable DNA ligase from the archaeon Thermococcus sp. 1519. Acta Crystallogr Sect F Structl Biol Cryst Commun 65:368–371Google Scholar
  25. Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Querellou J et al (2011) Pyrococcus yayanosii sp. nov., the first obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61(Pt 12):2827–2831PubMedGoogle Scholar
  26. Blamey JM, Adams MWW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta 1161:19–27PubMedGoogle Scholar
  27. Blumentals I, Robinson AS, Kelly RM (1990) Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1992–1998PubMedCentralPubMedGoogle Scholar
  28. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217PubMedGoogle Scholar
  29. Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346PubMedGoogle Scholar
  30. Bridger SL, Clarkson SM, Stirrett K, Debarry MB, Lipscomb GL et al (2011) Deletion strains reveal metabolic roles for key elemental sulfur responsive proteins in Pyrococcus furiosus. J Bacteriol 193:6498–6504PubMedCentralPubMedGoogle Scholar
  31. Bridger SL, Lancaster WA, Poole FL 2nd, Schut GJ, Adams MW (2012) Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 194:4097–4106PubMedCentralPubMedGoogle Scholar
  32. Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both alpha-1,4 and alpha-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59:2614–2621PubMedCentralPubMedGoogle Scholar
  33. Bylina EJ, Swanson RV, Mathur EJ, Lam DE (2007) Glycosidase enzymes, United States Patent US7294498 B2Google Scholar
  34. Cambon-Bonavita MA, Lesongeur F, Pignet P, Wery N, Lambert C et al (2003) Thermococcus atlanticus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge (corrected). Extremophiles 7:101–109PubMedGoogle Scholar
  35. Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48(Pt 4):1181–1185PubMedGoogle Scholar
  36. Chandrayan SK, Dhaunta N, Guptasarma P (2008) Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures. Protein Expr Purif 59:327–333PubMedGoogle Scholar
  37. Chandrayan SK, Mcternan PM, Hopkins RC, Sun J, Jenney FE Jr et al (2012) Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase. J Biol Chem 287:3257–3264PubMedCentralPubMedGoogle Scholar
  38. Charbonnier F, Erauso G, Barbeyron T, Prieur D, Forterre P (1992) Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol 174:6103–6108PubMedCentralPubMedGoogle Scholar
  39. Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J (2012) Characterization of DNA primase complex isolated from the Archaeon Thermococcus kodakaraensis. J Biol Chem 287:16209–16219PubMedCentralPubMedGoogle Scholar
  40. Cho Y, Lee HS, Kim YJ, Kang SG, Kim SJ et al (2007) Characterization of a dUTPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in polymerase chain reaction amplification. Mar Biotechnol 9:450–458PubMedGoogle Scholar
  41. Cohen GN, Barbe V, Flament D, Galperin M, Heilig R et al (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512PubMedGoogle Scholar
  42. Comb DG, Kucera RB (1993) Purified thermostable DNA polymerase obtainable from Thermococcus litoralis. European Patent EP0455430B1Google Scholar
  43. Comfort DA, Chou CJ, Conners SB, Vanfossen AL, Kelly RM (2008) Functional-genomics-based identification and characterization of open reading frames encoding alpha-glucoside-processing enzymes in the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 74:1281–1283PubMedCentralPubMedGoogle Scholar
  44. Costantino HR, Brown SH, Kelly RM (1990) Purification and Characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105-Degrees-C to 115-Degrees-C. J Bacteriol 172:3654–3660PubMedCentralPubMedGoogle Scholar
  45. Cui Z, Wang Y, Pham BP, Ping F, Pan H et al. (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625Google Scholar
  46. Dabrowski S, Kiaer Ahring B (2003) Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif 31:72–78PubMedGoogle Scholar
  47. Decker K, Loffert D, Kang J (2012) Thermostable polymerases from Thermococcus pacificus, United States Patent US 8124391 B2Google Scholar
  48. Dib R, Chobert JM, Dalgalarrondo M, Barbier G, Haertle T (1998) Purification, molecular properties and specificity of a thermoactive and thermostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem. FEBS Lett 431:279–284PubMedGoogle Scholar
  49. Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R et al (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114PubMedGoogle Scholar
  50. Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM et al (2011) RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 11:80PubMedCentralPubMedGoogle Scholar
  51. Driskill LE, Kusy K, Bauer MW, Kelly RM (1999) Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media. Appl Environ Microbiol 65:893–897PubMedCentralPubMedGoogle Scholar
  52. Du Z, Liu J, Albracht CD, Hsu A, Chen W et al (2011) Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 286:38638–38648PubMedCentralPubMedGoogle Scholar
  53. Duffaud GD, D’hennezel OB, Peek AS, Reysenbach AL, Kelly RM (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49PubMedGoogle Scholar
  54. Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B et al (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349Google Scholar
  55. Farkas J, Chung D, Debarry M, Adams MW, Westpheling J (2011) Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Appl Environ Microbiol 77:6343–6349PubMedCentralPubMedGoogle Scholar
  56. Farkas J, Stirrett K, Lipscomb GL, Nixon W, Scott RA et al (2012) Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. Appl Environ Microbiol 78:4669–4676PubMedCentralPubMedGoogle Scholar
  57. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov., represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61Google Scholar
  58. Fukuda W, Fukui T, Atomi H, Imanaka T (2004) First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 186:4620–4627PubMedCentralPubMedGoogle Scholar
  59. Fukuda W, Morimoto N, Imanaka T, Fujiwara S (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287:113–120PubMedGoogle Scholar
  60. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S et al (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363PubMedCentralPubMedGoogle Scholar
  61. Fukushima E, Shinka Y, Fukui T, Atomi H, Imanaka T (2007) Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J Bacteriol 189:7134–7144PubMedCentralPubMedGoogle Scholar
  62. Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128PubMedCentralPubMedGoogle Scholar
  63. Gardner AF, Kumar S, Perler FB (2012) Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. J Bacteriol 194:2375–2376PubMedCentralPubMedGoogle Scholar
  64. Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G et al (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 185:3888–3894PubMedCentralPubMedGoogle Scholar
  65. Ghasemi A, Salmanian AH, Sadeghifard N, Salarian AA, Gholi MK (2012) Cloning, expression and purification of Pwo polymerase from Pyrococcus woesei. Iran J Microbiol 3:118–122Google Scholar
  66. Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789PubMedCentralPubMedGoogle Scholar
  67. Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguenes G et al (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin. Int J Syst Bacteriol 46:1113–1119PubMedGoogle Scholar
  68. Godfroy A, Lesongeur F, Raguenes G, Querellou J, Antoine E et al (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626PubMedGoogle Scholar
  69. Gonnet M, Erauso G, Prieur D, Le Romancer M (2011) pAMT11, a novel plasmid isolated from a Thermococcus sp. strain closely related to the virus-like integrated element TKV1 of the Thermococcus kodakaraensis genome. Res Microbiol 162:132–143PubMedGoogle Scholar
  70. Gonzalez JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164PubMedGoogle Scholar
  71. Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL et al (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130PubMedGoogle Scholar
  72. Gonzalez JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM et al (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101PubMedGoogle Scholar
  73. Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 14:503–516PubMedGoogle Scholar
  74. Grote R, Li L, Tamaoka J, Kato C, Horikoshi K et al (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62PubMedGoogle Scholar
  75. Gueguen Y, Voorhorst WG, Van Der Oost J, De Vos WM (1997) Molecular and biochemical characterization of an endo-beta-1,3- glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 272:31258–31264PubMedGoogle Scholar
  76. Hagedoorn PL, Driessen MC, Van Den Bosch M, Landa I, Hagen WR (1998)Hyperthermophilic redox chemistry: a re-evaluation. FEBS Lett 440:311–314PubMedGoogle Scholar
  77. Hagens S, De Wouters T, Vollenweider P, Loessner MJ (2011) Reporter bacteriophage A511::celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells. Bacteriophage 1:143–151PubMedCentralPubMedGoogle Scholar
  78. Halio SB, Blumentals I, Short SA, Merrill BM, Kelly RM (1996) Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:2605–2612PubMedCentralPubMedGoogle Scholar
  79. Halio SB, Bauer MW, Mukund S, Adams MWW, Kelly RM (1997) Purification and characterization of two functional forms of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 63:289–295PubMedCentralPubMedGoogle Scholar
  80. Heider J, Mai XH, Adams MWW (1996) Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol 178:780–787PubMedCentralPubMedGoogle Scholar
  81. Holden JF, Baross JA (1993) Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4. J Bacteriol 175:2839–2843PubMedCentralPubMedGoogle Scholar
  82. Hopkins RC, Sun J, Jenney FE Jr, Chandrayan SK, Mcternan PM et al (2011)Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PLoS One 6:e26569PubMedCentralPubMedGoogle Scholar
  83. Huber R, Stohr J, Hohenhaus S, Rachel R, Burggraf S et al (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophillic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264Google Scholar
  84. Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594PubMedCentralPubMedGoogle Scholar
  85. Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T et al (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243PubMedCentralPubMedGoogle Scholar
  86. Ishibashi T, Tomita H, Yokooji Y, Morikita T, Watanabe B et al (2012) A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea. Extremophiles 16:819–828PubMedGoogle Scholar
  87. Jia B, Linh LT, Lee S, Pham BP, Liu J et al (2011) Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 15:337–346PubMedGoogle Scholar
  88. Jolivet E, L’haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851PubMedGoogle Scholar
  89. Jolivet E, Corre E, L’haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227PubMedGoogle Scholar
  90. Jun X, Lupeng L, Minjuan X, Oger P, Fengping W et al (2011) Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193:4297–4298PubMedCentralPubMedGoogle Scholar
  91. Jung JH, Holden JF, Seo DH, Park KH, Shin H et al (2012a) Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain CL1, isolated from a Paralvinella sp. polychaete worm collected from a hydrothermal vent. J Bacteriol 194:4769–4770PubMedCentralPubMedGoogle Scholar
  92. Jung JH, Lee JH, Holden JF, Seo DH, Shin H et al (2012b) Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deep-sea hydrothermal sulfide chimney on the Juan de Fuca Ridge. J Bacteriol 194:4434–4435PubMedCentralPubMedGoogle Scholar
  93. Kamp RM, Tsunasawa S, Hirano H (1998) Application of new deblocking aminopeptidase from Pyrococcus furiosus for microsequence analysis of blocked proteins. J Protein Chem 17:512–513PubMedGoogle Scholar
  94. Kanai T, Matsuoka R, Beppu H, Nakajima A, Okada Y et al (2011) Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 193:3109–3116PubMedCentralPubMedGoogle Scholar
  95. Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M et al (2001) Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Appl Environ Microbiol 67:2445–2452PubMedCentralPubMedGoogle Scholar
  96. Kawarabayasi Y (2001) Genome of Pyrococcus horikoshii OT3. Methods Enzymol 330:124–134PubMedGoogle Scholar
  97. Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S et al (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395PubMedGoogle Scholar
  98. Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491Google Scholar
  99. Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312PubMedGoogle Scholar
  100. Killelea T, Connolly BA (2011) Role of disulfide bridges in archaeal family-B DNA polymerases. Chembiochem 12:1330–1336, 1439–4227PubMedGoogle Scholar
  101. Kim HW, Ishikawa K (2011) Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Biochem J 437:223–230PubMedGoogle Scholar
  102. Kim HW, Mino K, Ishikawa K (2008a) Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1169–1171PubMedCentralPubMedGoogle Scholar
  103. Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008b) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42:356–361PubMedGoogle Scholar
  104. Kim CS, Pierre B, Ostermeier M, Looger LL, Kim JR (2009a) Enzyme stabilization by domain insertion into a thermophilic protein. Protein Eng Des Sel 22:615–623PubMedGoogle Scholar
  105. Kim HW, Kashima Y, Ishikawa K, Yamano N (2009b) Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Biosci Biotechnol Biochem 73:224–227PubMedGoogle Scholar
  106. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK et al (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355, 0028–0836PubMedGoogle Scholar
  107. Kim KP, Bae H, Kim IH, Kwon ST (2011) Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon Thermococcus celer. Biotechnol Lett 33:339–346PubMedGoogle Scholar
  108. Kim BK, Lee SH, Kim SY, Jeong H, Kwon SK et al (2012) Genome sequence of an oligohaline hyperthermophilic archaeon, Thermococcus zilligii AN1, isolated from a terrestrial geothermal freshwater spring. J Bacteriol 194:3765–3766PubMedCentralPubMedGoogle Scholar
  109. Klages KU, Morgan HW (1994) Characterization of an extremely thermophilic sulfur-metabolizing archaebacterium belonging to the Thermococcales. Arch Microbiol 162:261–266Google Scholar
  110. Kletzin A, Adams MWW (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol 178:248–257PubMedCentralPubMedGoogle Scholar
  111. Klingeberg M, Galunsky B, Sjoholm C, Kasche V, Antranikian G (1995) Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl Environ Microbiol 61:3098–3104PubMedCentralPubMedGoogle Scholar
  112. Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236Google Scholar
  113. Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034PubMedGoogle Scholar
  114. Konig H, Skorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303Google Scholar
  115. Koning SM, Elferink MG, Konings WN, Driessen AJ (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183:4979–4984PubMedCentralPubMedGoogle Scholar
  116. Kostyukova AS, Gongadze GM, Polosina YY, Bonch-Osmolovskaya EA, Miroshnichenko ML et al (1999) Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of “Caldococcus litoralis” Z-1301 as Thermococcus litoralis Z-1301. Extremophiles 3:239–245PubMedGoogle Scholar
  117. Koutsopoulos S, Van Der Oost J, Norde W (2004) Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability. Langmuir 20:6401–6406PubMedGoogle Scholar
  118. Koutsopoulos S, Van Der Oost J, Norde W (2005) Structural features of a hyperthermostable endo-beta-1,3-glucanase in solution and adsorbed on “invisible” particles. Biophys J 88:467–474PubMedCentralPubMedGoogle Scholar
  119. Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M et al (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514PubMedGoogle Scholar
  120. Kuwabara T, Minaba M, Ogi N, Kamekura M (2007) Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:437–443PubMedGoogle Scholar
  121. Lecompte O, Ripp R, Puzos-Barbe V, Duprat S, Heilig R et al (2001) Genome evolution at the genus level: comparison of three complete genomes of hyperthermophilic archaea. Genome Res 11:981–993PubMedCentralPubMedGoogle Scholar
  122. Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK et al (2006a) Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1. Mar Biotechnol 8:425–432PubMedGoogle Scholar
  123. Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK et al (2006b) Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1. Appl Environ Microbiol 72:1886–1890PubMedCentralPubMedGoogle Scholar
  124. Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI et al (2006c) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188:2115–2125PubMedCentralPubMedGoogle Scholar
  125. Lee HS, Kang SG, Bae SS, Lim JK, Cho Y et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499PubMedCentralPubMedGoogle Scholar
  126. Lee HS, Cho Y, Kim YJ, Lho TO, Cha SS et al (2009) A novel inorganic pyrophosphatase in Thermococcus onnurineus NA1. FEMS Microbiol Lett 300:68–74PubMedGoogle Scholar
  127. Lee JH, Kang SG, Lee HS, Kim SJ, Kwon KK et al. (2010a) Novel hydrogenases isolated from Thermococcus spp., genes encoding the same, and methods for producing hydrogen using microorganisms having the genes, United States Patent US 2010/0311142 A1Google Scholar
  128. Lee JI, Kim YJ, Bae H, Cho SS, Lee JH et al (2010b) Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol 160:1585–1599PubMedGoogle Scholar
  129. Lee YG, Kang SG, Lee JH, Kim SI, Chung YH (2010c) Characterization of hyperthermostable fructose-1,6-bisphosphatase from Thermococcus onnurineus NA1. J Microbiol 48:803–807PubMedGoogle Scholar
  130. Lee HS, Bae SS, Kim MS, Kwon KK, Kang SG et al (2011) Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J Bacteriol 193:3666–3667PubMedCentralPubMedGoogle Scholar
  131. Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608PubMedGoogle Scholar
  132. Lepage E, Marguet E, Geslin C, Matte-Tailliez O, Zillig W et al (2004) Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl Environ Microbiol 70:1277–1286PubMedCentralPubMedGoogle Scholar
  133. Lim JK, Kang SG, Lebedinsky AV, Lee JH, Lee HS (2010) Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Appl Environ Microbiol 76:6286–6289PubMedCentralPubMedGoogle Scholar
  134. Lipscomb GL, Keese AM, Cowart DM, Schut GJ, Thomm M et al (2009) SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol Microbiol 71:332–349PubMedCentralPubMedGoogle Scholar
  135. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr et al (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238PubMedCentralPubMedGoogle Scholar
  136. Liu B, Bartlam M, Gao R, Zhou W, Pang H et al (2004) Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii. Biophys J 86:420–427PubMedCentralPubMedGoogle Scholar
  137. Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA et al (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus 108:1–6, 0378-1119Google Scholar
  138. Ma K, Adams MW (2001) NAD(P)H:rubredoxin oxidoreductase from Pyrococcus furiosus. Methods Enzymol 334:55–62PubMedGoogle Scholar
  139. Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344PubMedCentralPubMedGoogle Scholar
  140. Ma K, Hutchins A, Sung SJS, Adams MWW (1997) Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci USA 94:9608–9613PubMedCentralPubMedGoogle Scholar
  141. Mai X, Adams MW (1994) Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem 269:16726–16732PubMedGoogle Scholar
  142. Mai X, Adams MW (1996a) Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol 178:5890–5896PubMedCentralPubMedGoogle Scholar
  143. Mai XH, Adams MWW (1996b) Purification and characterization of two reversible and ADP-dependent acetyl coenzyme a synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:5897–5903PubMedCentralPubMedGoogle Scholar
  144. Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL et al (1999) Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9:608–628PubMedGoogle Scholar
  145. Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33PubMedCentralPubMedGoogle Scholar
  146. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML et al (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588PubMedCentralPubMedGoogle Scholar
  147. Marsic D, Flaman JM, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775–788PubMedGoogle Scholar
  148. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D et al (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(Pt 2):351–359PubMedGoogle Scholar
  149. Mathur EJ, Lee E, Bylina E (2004) Thermostable phosphatases, EP Patent 1,488,802Google Scholar
  150. Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585:452–458PubMedGoogle Scholar
  151. Matsumi R, Atomi H, Imanaka T (2005) Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 187:7072–7080PubMedCentralPubMedGoogle Scholar
  152. Matsuno Y, Sugai A, Higashibata H, Fukuda W, Ueda K et al (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73:104–108PubMedGoogle Scholar
  153. Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K (2012) Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr Purif 84:265–269PubMedGoogle Scholar
  154. Miroshnichenko ML, Bonchosmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA et al (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262Google Scholar
  155. Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM et al (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48(Pt 1):23–29PubMedGoogle Scholar
  156. Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA et al (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91PubMedGoogle Scholar
  157. Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566PubMedCentralPubMedGoogle Scholar
  158. Mukund S, Adams MWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase—evidence for its participation in a unique glycolytic pathway. J Biol Chem 266:14208–14216PubMedGoogle Scholar
  159. Mukund S, Adams MWW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:8389–8392PubMedGoogle Scholar
  160. Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924PubMedCentralPubMedGoogle Scholar
  161. Nahalka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223PubMedGoogle Scholar
  162. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207Google Scholar
  163. Nishihara M, Nagahama S, Ohga M, Koga Y (2000) Straight-chain fatty alcohols in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 4:275–277PubMedGoogle Scholar
  164. Oger P, Sokolova TG, Kozhevnikova DA, Chernyh NA, Bartlett DH et al (2011) Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. J Bacteriol 193:7019–7020PubMedCentralPubMedGoogle Scholar
  165. Orita I, Sato T, Yurimoto H, Kato N, Atomi H et al (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188:4698–4704PubMedCentralPubMedGoogle Scholar
  166. Ozawa Y, Nakamura T, Kamata N, Yasujima D, Urushiyama A et al (2005) Thermococcus profundus 2-ketoisovalerate ferredoxin oxidoreductase, a key enzyme in the archaeal energy-producing amino acid metabolic pathway. J Biochem 137:101–107PubMedGoogle Scholar
  167. Park JB, Fan CL, Hoffman BM, Adams MW (1991) Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 266:19351–19356PubMedGoogle Scholar
  168. Park HS, Kayser KJ, Kwak JH, Kilbane JJ 2nd (2004) Heterologous gene expression in Thermus thermophilus: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J Ind Microbiol Biotechnol 31:189–197PubMedGoogle Scholar
  169. Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J et al (2007) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618PubMedGoogle Scholar
  170. Pisa KY, Huber H, Thomm M, Muller V (2007) A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 274:3928–3938PubMedGoogle Scholar
  171. Prieur D, Erauso G, Geslin C, Lucas S, Gaillard M et al (2004) Genetic elements of Thermococcales. Biochem Soc Trans 32:184–187PubMedGoogle Scholar
  172. Ramos A, Raven N, Sharp RJ, Bartolucci S, Rossi M et al (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025PubMedCentralPubMedGoogle Scholar
  173. Robb FT, Park JB, Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase—a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim Biophys Acta 1120:267–272PubMedGoogle Scholar
  174. Robb FT, Maeder DL, Brown JR, Diruggiero J, Stump MD et al (2001) Genomic sequence of hyperthermophile Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157PubMedGoogle Scholar
  175. Ronimus RS, Reysenbach A, Musgrave DR, Morgan HW (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248PubMedGoogle Scholar
  176. Sakuraba H, Goda S, Ohshima T (2004) Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. Chem Rec 3:281–287PubMedGoogle Scholar
  177. Santangelo TJ, Cubonova L, Reeve JN (2008a) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104PubMedCentralPubMedGoogle Scholar
  178. Santangelo TJ, Cubonova L, Matsumi R, Atomi H, Imanaka T et al (2008b) Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J Bacteriol 190:2244–2248PubMedCentralPubMedGoogle Scholar
  179. Santangelo TJ, Cubonova L, Skinner KM, Reeve JN (2009) Archaeal intrinsic transcription termination in vivo. J Bacteriol 191:7102–7108PubMedCentralPubMedGoogle Scholar
  180. Santangelo TJ, Cubonova L, Reeve JN (2010) Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052PubMedCentralPubMedGoogle Scholar
  181. Sapra R, Verhagen MFJM, Adams MWW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428PubMedCentralPubMedGoogle Scholar
  182. Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550PubMedCentralPubMedGoogle Scholar
  183. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220PubMedCentralPubMedGoogle Scholar
  184. Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899PubMedCentralPubMedGoogle Scholar
  185. Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592PubMedCentralPubMedGoogle Scholar
  186. Schut GJ, Menon AL, Adams MWW (2001) 2-ketoacid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol 331:144–158PubMedGoogle Scholar
  187. Schut GJ, Brehm SD, Datta S, Adams MWW (2003) Whole genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947PubMedCentralPubMedGoogle Scholar
  188. Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441PubMedCentralPubMedGoogle Scholar
  189. Schut GJ, Boyd ES, Peters JW, Adams MW (2012a) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37(2):182–203PubMedGoogle Scholar
  190. Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MW (2012b) Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus. Front Microbiol 3:163PubMedCentralPubMedGoogle Scholar
  191. Schwarz A, Thomsen MS, Nidetzky B (2009) Enzymatic synthesis of beta-glucosylglycerol using a continuous-flow microreactor containing thermostable beta-glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnol Bioeng 103:865–872PubMedGoogle Scholar
  192. Shikata K, Fukui T, Atomi H, Imanaka T (2007) A novel ADP-forming succinyl-CoA synthetase in Thermococcus kodakaraensis structurally related to the archaeal nucleoside diphosphate-forming acetyl-CoA synthetases. J Biol Chem 282:26963–26970PubMedGoogle Scholar
  193. Silva PJ, Van Den Ban EC, Wassink H, Haaker H, De Castro B et al (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541–6551PubMedGoogle Scholar
  194. Sjoholm C, Antranikian G (1997) (Thermococcus) amylase and pullulanase. International Patent Classification C12N 9/26, 9/44Google Scholar
  195. Smith ET, Blamey JM, Zhou ZH, Adams MW (1995) A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involved in hydrogen production from pyruvate. Biochemistry 34:7161–7169PubMedGoogle Scholar
  196. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV et al (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323PubMedGoogle Scholar
  197. Soler N, Marguet E, Verbavatz JM, Forterre P (2008) Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res Microbiol 159:390–399PubMedGoogle Scholar
  198. Soler N, Gaudin M, Marguet E, Forterre P (2011) Plasmids, viruses and virus-like membrane vesicles from Thermococcales. Biochem Soc Trans 39:36–44PubMedGoogle Scholar
  199. Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW et al (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3′-5′ exonuclease activity. Proc Natl Acad Sci 93:5281–5285PubMedCentralPubMedGoogle Scholar
  200. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690, 1367–4803PubMedGoogle Scholar
  201. Stekhanova TN, Mardanov AV, Bezsudnova EY, Gumerov VM, Ravin NV et al (2010) Characterization of a thermostable short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Appl Environ Microbiol 76:4096–4098PubMedCentralPubMedGoogle Scholar
  202. Stetter KO (1998) Thermococcus AV4 and enzymes produced by the same, United States Patents US 005714373AGoogle Scholar
  203. Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10:357–362PubMedGoogle Scholar
  204. Sun J, Hopkins RC, Jenney FE, Mcternan PM, Adams MW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526PubMedCentralPubMedGoogle Scholar
  205. Tachibana Y, Takaha T, Fujiwara S, Takagi M, Imanaka T (2000) Acceptor specificity of 4-alpha-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J Biosci Bioeng 90:406–409PubMedGoogle Scholar
  206. Takacs M, Toth A, Bogos B, Varga A, Rakhely G et al (2008) Formate hydrogenlyase in the hyperthermophilic archaeon Thermococcus litoralis. BMC Microbiol 8:88PubMedCentralPubMedGoogle Scholar
  207. Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291PubMedGoogle Scholar
  208. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:1411Google Scholar
  209. Tanaka T, Fukui T, Atomi H, Imanaka T (2003) Characterization of an exo-beta-d-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:5175–5181PubMedCentralPubMedGoogle Scholar
  210. Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T (2004) Concerted action of diacetylchitobiose deacetylase and exo-beta-d-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 279:30021–30027PubMedGoogle Scholar
  211. Tanaka T, Takahashi F, Fukui T, Fujiwara S, Atomi H et al (2005) Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol 187:7038–7044PubMedCentralPubMedGoogle Scholar
  212. Tatur J, Hagedoorn PL, Overeijnder ML, Hagen WR (2006) A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10:139–148PubMedGoogle Scholar
  213. Taylor IN, Brown RC, Bycroft M, King G, Littlechild JA et al (2004) Application of thermophilic enzymes in commercial biotransformation processes. Biochem Soc Trans 32:290–292PubMedGoogle Scholar
  214. Teske A, Edgcomb V, Rivers AR, Thompson JR, De Vera Gomez A et al (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:905–915PubMedGoogle Scholar
  215. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedCentralPubMedGoogle Scholar
  216. Theriot CM, Tove SR, Grunden AM (2009) Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 86:177–188PubMedGoogle Scholar
  217. Theriot CM, Du X, Tove SR, Grunden AM (2010) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87:1715–1726PubMedGoogle Scholar
  218. Tomita H, Yokooji Y, Ishibashi T, Imanaka T, Atomi H (2012) Biochemical characterization of pantoate kinase, a novel enzyme necessary for coenzyme A biosynthesis in the Archaea. J Bacteriol 194:5434–5443PubMedCentralPubMedGoogle Scholar
  219. Tsunasawa S, Nakura S, Tanigawa T, Kato I (1998) Pyrrolidone carboxyl peptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: cloning and overexpression in Escherichia coli of the gene, and its application to protein sequence analysis. J Biochem 124:778–783PubMedGoogle Scholar
  220. Van Der Oost J, Schut G, Kengen SW, Hagen WR, Thomm M et al (1998) The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. J Biol Chem 273:28149–28154PubMedGoogle Scholar
  221. Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193:1481–1482PubMedCentralPubMedGoogle Scholar
  222. Verhagen MF, Menon AL, Schut GJ, Adams MW (2001) Pyrococcus furiosus: large-scale cultivation and enzyme purification. Meths Enzymol 330:25–30Google Scholar
  223. Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MWW et al (2004) The unique features of glycolytic pathways in Archaea. Biochem J 377:819–822Google Scholar
  224. Voorhorst WG, Gueguen Y, Geerling AC, Schut G, Dahlke I et al (1999) Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers. J Bacteriol 181:3777–3783PubMedCentralPubMedGoogle Scholar
  225. Waege I, Schmid G, Thumann S, Thomm M, Hausner W (2010) Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol 76:3308–3313PubMedCentralPubMedGoogle Scholar
  226. Wang X, Gao Z, Xu X, Ruan L (2011) Complete genome sequence of Thermococcus sp. strain 4557, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area. J Bacteriol 193:5544–5545PubMedCentralPubMedGoogle Scholar
  227. Ward DE, Revet IM, Nandakumar R, Tuttle JH, De Vos WM et al (2002a) Characterization of plasmid pRT1 from Pyrococcus sp. strain JT1. J Bacteriol 184:2561–2566PubMedCentralPubMedGoogle Scholar
  228. Ward DE, Shockley KR, Chang LS, Levy RD, Michel JK et al (2002b) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74PubMedCentralPubMedGoogle Scholar
  229. Watanabe M, Yuzawa H, Handa N, Kobayashi I (2006) Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Appl Environ Microbiol 72:5367–5375PubMedCentralPubMedGoogle Scholar
  230. Wery N, Cambon-Bonavita MA, Lesongeur F, Barbier G (2002) Diversity of anaerobic heterotrophic thermophiles isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. FEMS Microbiol Ecol 41:105–114PubMedGoogle Scholar
  231. Wheeldon IR, Campbell E, Banta S (2009) A chimeric fusion protein engineered with disparate functionalities-enzymatic activity and self-assembly. J Mol Biol 392:129–142PubMedGoogle Scholar
  232. Woodward CA, Kaufman EN (1996) Enzymatic catalysis in organic solvents: polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene. Biotechnol Bioeng 52:423–428PubMedGoogle Scholar
  233. Wu X, Kobori H, Orita I, Zhang C, Imanaka T et al (2012) Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD(+) and NADP(+). Biotechnol Bioeng 109:53–62PubMedGoogle Scholar
  234. Xavier KB, Martins LO, Peist R, Kossmann M, Boos W et al (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773–4777PubMedCentralPubMedGoogle Scholar
  235. Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 181:3358–3367PubMedCentralPubMedGoogle Scholar
  236. Yamada Y, Fukuda W, Hirooka K, Hiromoto T, Nakayama J et al (2009) Efficient in vitro synthesis of cis-polyisoprenes using a thermostable cis-prenyltransferase from a hyperthermophilic archaeon Thermococcus kodakaraensis. J Biotechnol 143:151–156PubMedGoogle Scholar
  237. Yang H, Lipscomb GL, Keese AM, Schut GJ, Thomm M et al (2010) SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch. Mol Microbiol 77:1111–1122PubMedCentralPubMedGoogle Scholar
  238. Yang TC, Legault S, Kayiranga EA, Kumaran J, Ishikawa K et al (2012) The N-terminal beta-sheet of the hyperthermophilic endoglucanase from Pyrococcus horikoshii is critical for thermostability. Appl Environ Microbiol 78:3059–3067PubMedCentralPubMedGoogle Scholar
  239. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH et al (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  240. Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic Archaeon Thermococcus guaymasensis. J Bacteriol 193:3009–3019PubMedCentralPubMedGoogle Scholar
  241. Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 284:28137–28145PubMedCentralPubMedGoogle Scholar
  242. Zeng X, Zhang X, Jiang L, Alain K, Jebbar M et al (2012) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63(Pt 6):2155–2159PubMedGoogle Scholar
  243. Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD (1983) The Archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the Archaebacteria. Syst Appl Microbiol 4:88–94PubMedGoogle Scholar
  244. Zivanovic Y, Lopez P, Philippe H, Forterre P (2002) Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30:1902–1910PubMedCentralPubMedGoogle Scholar
  245. Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guerin P et al (2009) Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radio resistant organism known amongst the Archaea. Genome Biol 10:R70PubMedCentralPubMedGoogle Scholar
  246. Zona R, Chang F, O’donohue MJ, Janecek S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gerrit J. Schut
    • 1
  • Gina L. Lipscomb
    • 1
  • Yejun Han
    • 2
  • Jaspreet S. Notey
    • 2
  • Robert M. Kelly
    • 2
  • Michael M. W. Adams
    • 1
  1. 1.Department of Biochemistry & Molecular BiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations