The Family Methanocaldococcaceae

  • Aharon Oren
Reference work entry


The family Methanocaldococcaceae consists of two genera: Methanocaldococcus (type genus) and Methanotorris. As of December 2013, these genera contained six and two species, respectively. This family of thermophilic and neutrophilic to slightly acidophilic methanogens belongs to the order Methanococcales. The members are coccoid in shape, are generally motile, and have a very short generation time ranging from 25 to 45 min under optimal conditions. Methanogenesis from H2/CO2 is the sole energy-generating process, and all species are capable of chemolithoautotrophic growth. Members of the Methanocaldococcaceae have been found associated with marine hydrothermal vent areas.


Hydrothermal Vent Methane Formation Isopentenyl Diphosphate Guaymas Basin Tetraether Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bellack A, Huber H, Rachel R, Wanner G, Wirth R (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int J Syst Evol Microbiol 61:1239–1245PubMedCrossRefGoogle Scholar
  2. Boonyaratanakornkit BB, Clark DS (2008) Physiology and biochemistry of Methanocaldococcus jannaschii at elevated pressures. In: Michiels C, Bartlett DA, Aertsen A (eds) High-pressure microbiology. American Society for Microbiology, Washington, DC, pp 293–304Google Scholar
  3. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073PubMedCrossRefGoogle Scholar
  4. Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvière P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269PubMedCrossRefGoogle Scholar
  5. Ciulla RA, Burggraf S, Stetter KO, Roberts MF (1994) Occurrence and role of di-myo-inositol-1-1′-phosphate in Methanococcus igneus. Appl Environ Microbiol 60:3660–3664PubMedCentralPubMedGoogle Scholar
  6. Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 259:15234–15241PubMedGoogle Scholar
  7. Drevland RM, Waheed A, Graham DE (2007) Enzymology and evolution of the pyruvate pathway to 2-oxobutyrate in Methanocaldococcus jannaschii. J Bacteriol 189:4391–4400PubMedCentralPubMedCrossRefGoogle Scholar
  8. Edgell DR, Doolittle WF (1997) Archaebacterial genomics: the complete genome sequence of Methanococcus jannaschii. Bioessays 19:1–4CrossRefGoogle Scholar
  9. Ferrante G, Richards JC, Sprott GD (1990) Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii. Biochem Cell Biol 68:274–283PubMedCrossRefGoogle Scholar
  10. Garrett RA (1996) Genomes: Methanococcus jannaschii and the golden fleece. Curr Biol 6:1377–1380PubMedCrossRefGoogle Scholar
  11. Graham DE, Kyrpides N, Anderson IJ, Overbeek R, Whitman WB (2001) Genome of Methanocaldococcus (Methanococcus) jannaschii. Methods Enzymol 330:40–123PubMedCrossRefGoogle Scholar
  12. Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hamana K, Niitsu M, Samejima K, Itoh T, Hamana H, Shinozawa T (1998) Polyamines of the thermophilic eubacteria belonging to the genera Thermotoga, Thermodesulfovibrio, Thermoleophilum, Thermus, Rhodothermus and Meiothermus, and the thermophilic archaebacteria belonging to the genera Aeropyrum, Picrophilus, Methanobacterium and Methanococcus. Microbios 94:7–21Google Scholar
  14. Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919PubMedCrossRefGoogle Scholar
  15. Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589PubMedCrossRefGoogle Scholar
  16. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  17. Kaneshiro SM, Clark DS (1995) Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. J Bacteriol 177:3668–3672PubMedCentralPubMedGoogle Scholar
  18. Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236CrossRefGoogle Scholar
  19. König H, Stetter KO (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309CrossRefGoogle Scholar
  20. Krupovič M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397:144–160PubMedCrossRefGoogle Scholar
  21. Kyrpides NC, Olsen GJ, Klenk HP, White O, Woese CR (1996) Methanococcus jannaschii genome: revisited. Microb Comp Genomics 1:329–338PubMedGoogle Scholar
  22. L’Haridon S, Reysenbach AL, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935PubMedCrossRefGoogle Scholar
  23. Metha MP, Baross JA (2006) Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science 314:1783–1786CrossRefGoogle Scholar
  24. Miller JF, Shah NN, Nelson CM, Ludlow JM, Clark DS (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042PubMedCentralPubMedGoogle Scholar
  25. Nercessian O, Corre E, Jeanthon C (2000) Phylogenetic analysis of the microbial communities from a deep hot oil reservoir in Western Siberia. In: Antranikian G, Grote R, Sahn K (eds) Abstracts of the third international congress on extremophiles, Hamburg, Abstract P10:75Google Scholar
  26. Olsen GJ, Woese CR (1996) Lessons from an archaeal genome: what are we learning from Methanococcus jannaschii? Trends Genet 12:377–379PubMedCrossRefGoogle Scholar
  27. Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508PubMedCentralPubMedGoogle Scholar
  28. Selkov E, Maltsev N, Olsen GJ, Overbeek R, Whitman WB (1997) A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene 197:GC10–GC25CrossRefGoogle Scholar
  29. Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910PubMedCentralPubMedGoogle Scholar
  30. Sprott GD, Ekiel I, Patel GB (1993) Metabolic pathways in Methanococcus jannaschii and other methanogenic bacteria. Appl Environ Microbiol 59:1092–1098PubMedCentralPubMedGoogle Scholar
  31. Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 189:7392–7398PubMedCentralPubMedCrossRefGoogle Scholar
  32. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311CrossRefGoogle Scholar
  33. Takai K, Nealson KH, Horikoshi K (2004) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100PubMedCrossRefGoogle Scholar
  34. Thennarasu S, Polireddy D, Antony A, Yada MR, Sivakumar N (2013) Draft genome sequence of a highly flagellated, fast-swimming archaeon, Methanocaldococcus villosus strain KIN24-T80 (DSM 22612). Genome Announc 1:e00481-13PubMedCentralPubMedCrossRefGoogle Scholar
  35. Tsoka S, Simon D, Ouzounis CA (2004) Automated metabolic reconstruction for Methanococcus jannaschii. Archaea 1:223–229PubMedCentralPubMedCrossRefGoogle Scholar
  36. White RH (2008) Biochemical origins of lactaldehyde and hydroxyacetone in Methanocaldococcus jannaschii. Biochemistry 47:5037–5046PubMedCrossRefGoogle Scholar
  37. Whitman WB (2001a) Genus I. Methanocaldococcus gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 243–245Google Scholar
  38. Whitman WB (2001b) Genus II Methanotorris gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 245–246Google Scholar
  39. Whitman WB, Jeanthon C (2006) Methanococcales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, a handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3, 3rd edn. Springer, New York, pp 257–273Google Scholar
  40. Whitman WB, Boone DR, Koga Y (2001) Family II. Methanococcaceae fam. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 242–243Google Scholar
  41. Wu H, Yuan Y, Ma J, Gao Y (2011) Cloning, expression, purification, crystallization and preliminary crystallographic analysis of NifH1 from Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:565–567PubMedCentralPubMedCrossRefGoogle Scholar
  42. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations