The Family Acidobacteriaceae

  • Barbara J. Campbell
Reference work entry


The Acidobacteriaceae, one of three families in the phylum Acidobacteria, contains seven validly described genera. Two major clades are identified based on 16S rRNA gene sequence phylogenetic analysis; the first contains Acidobacterium, Acidicapsa, Telmatobacter, and Bryocella, while the second contains Edaphobacter, Granulicella, and Terriglobus. Genome analysis of two type strains as well as four others in the family indicates the ability to degrade a broad array of simple carbon compounds as well as plant and microbial polysaccharides, including cellulose, although only a few species have been shown to ferment cellulose. All strains are rod-shaped and display a range of cellular and physiological characteristics. Two genera are facultative anaerobes; the rest are aerobic chemoheterotrophs. All are acidophilic and slow growing and most were difficult to isolate. All contain the isoprenoid quinone menaquinone MK-8. Strains were isolated from a variety of acidic environments, including soils, termite guts, Sphagnum peat, and acidic mine material. Based on 16S rRNA sequence analyses, the family is extremely abundant and diverse and is found in a wide range of acidic environments, including, but not limited to, soils, tundra, lakes, sediments, acidic mine sites, and uranium-contaminated soils.


Major Fatty Acid Tundra Soil Microbial Polysaccharide Peritrichous Flagellum Liquid Mineral Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adekambi T, Shinnick TM, Raoult D, Drancourt M (2008) Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 58:1807–1814PubMedCrossRefGoogle Scholar
  2. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152PubMedCrossRefGoogle Scholar
  3. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedCentralPubMedCrossRefGoogle Scholar
  4. Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227PubMedCrossRefGoogle Scholar
  5. Bruns A, Hoffelner H, Overmann J (2003a) A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45:161–171PubMedCrossRefGoogle Scholar
  6. Bruns A, Nubel U, Cypionka H, Overmann J (2003b) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989PubMedCentralPubMedCrossRefGoogle Scholar
  7. Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441–452PubMedCrossRefGoogle Scholar
  8. Cameron TJ, Coates JD (2011) Phylum XVIII. Acidobacteria. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s Manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 725–735Google Scholar
  9. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854PubMedCrossRefGoogle Scholar
  10. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chin KJ, Hahn D, Hengstmann U, Liesack W, Janssen PH (1999) Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol 65:5042–5049PubMedCentralPubMedGoogle Scholar
  12. Damsté JSS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, Dedysh SN (2011) 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154PubMedCrossRefGoogle Scholar
  13. Dang HY, Li J, Chen MN, Li TG, Zeng ZG, Yin XB (2009) Fine-scale vertical distribution of bacteria in the east pacific deep-sea sediments determined via 16S rRNA gene T-RFLP and clone library analyses. World J Microbiol Biotechnol 25:179–188CrossRefGoogle Scholar
  14. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969PubMedCrossRefGoogle Scholar
  15. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic sphagnum peat bog. Appl Environ Microbiol 72:2110–2117PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dedysh SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina NE, Rijpstra WIC, Damsté JSS (2012) Bryocella elongata gen. nov., sp nov., a member of subdivision 1 of the acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62:654–664PubMedCrossRefGoogle Scholar
  17. Eichorst SA, Breznak JA, Schmidt TM (2007a) In validation of the publication of new names and combinations previously effectively published outside of IJSEM. List no. 117. Int J Syst Evol Microbiol 57:1933–1934CrossRefGoogle Scholar
  18. Eichorst SA, Breznak JA, Schmidt TM (2007b) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedCentralPubMedCrossRefGoogle Scholar
  19. Eichorst SA, Kuske CR, Schmidt TM (2011) Influence of plant polymers on the distribution and cultivation of bacteria in the phylum acidobacteria. Appl Environ Microbiol 77:586–596PubMedCentralPubMedCrossRefGoogle Scholar
  20. Felske A, de Vos WM, Akkermans ADL (2000) Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil. Lett Appl Microbiol 31:118–122PubMedCrossRefGoogle Scholar
  21. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  23. Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hiraishi A, Kishimoto N, Kosako Y, Wakao N, Tano T (1995) Phylogenetic position of the menaquinone-containing acidophilic chemoorganotroph acidobacterium capsulatum. FEMS Microbiol Lett 132:91–94PubMedCrossRefGoogle Scholar
  25. Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161PubMedCrossRefGoogle Scholar
  26. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:6793–6793 (vol 180, pg 4765, 1998)Google Scholar
  27. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853CrossRefGoogle Scholar
  28. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microbial Ecol 61:518–528CrossRefGoogle Scholar
  30. Kim BS, Oh HM, Kang H, Park SS, Chun J (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211Google Scholar
  31. Kishimoto N, Tano T (1987) Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J Gen Appl Microbiol 33:11–25CrossRefGoogle Scholar
  32. Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7CrossRefGoogle Scholar
  33. Kleinsteuber S, Muller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2008) Diversity and in situ quantification of acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117PubMedCrossRefGoogle Scholar
  34. Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp nov., and Edaphobacter aggregans sp nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122PubMedCrossRefGoogle Scholar
  35. Kulichevskaya IS, Kostina LA, Valášková V, Rijpstra WI, Damsté JS, de Boer W, Dedysh SN (2012) Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62:1512–1520PubMedCrossRefGoogle Scholar
  36. Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621PubMedCentralPubMedGoogle Scholar
  37. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedCrossRefGoogle Scholar
  38. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443PubMedCrossRefGoogle Scholar
  39. Männistö MK, Tiirola M, Haggblom MM (2007) Bacterial communities in arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465PubMedCrossRefGoogle Scholar
  40. Männistö MK, Rawat S, Starovoytov V, Haggblom MM (2011) Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61:1823–1828PubMedCrossRefGoogle Scholar
  41. Männistö M, Rawat S, Starovoytov V, Haggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella sapmiensis sp. nov. and Granulicella tundricola sp. nov., novel Acidobacteria from tundra soil of Northern Finland. Int J Syst Evol Microbiol 62:2097–2106PubMedCrossRefGoogle Scholar
  42. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang JH, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122PubMedCentralPubMedCrossRefGoogle Scholar
  43. Mondani L, Benzerara K, Carriere M, Christen R, Mamindy-Pajany Y, Fevrier L, Marmier N, Achouak W, Nardoux P, Berthomieu C, Chapon V (2011) Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls. PLoS One 6:e25771PubMedCentralPubMedCrossRefGoogle Scholar
  44. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718PubMedCentralPubMedCrossRefGoogle Scholar
  45. Nielsen L, Li XH, Halverson LJ (2011) Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 13:1342–1356PubMedCrossRefGoogle Scholar
  46. Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov., and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959PubMedCrossRefGoogle Scholar
  47. Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of acidobacteria from acidic sphagnum peat. ISME J 2:551–560PubMedCrossRefGoogle Scholar
  48. Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh SN (2012) Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol 62:430–437PubMedCrossRefGoogle Scholar
  49. Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH, Eck J, Schleper C (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575PubMedCrossRefGoogle Scholar
  50. Rawat SR, Mannisto MK, Bromberg Y, Haggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82(2):341–355PubMedCrossRefGoogle Scholar
  51. Rowe OF, Sanchez-Espana J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771PubMedCrossRefGoogle Scholar
  52. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  53. Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857PubMedCentralPubMedCrossRefGoogle Scholar
  54. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu ZY, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang YL, Wilbur WJ, Yaschenko E, Ye J (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25PubMedCentralPubMedCrossRefGoogle Scholar
  55. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  56. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755PubMedCentralPubMedCrossRefGoogle Scholar
  57. Valášková V, de Boer W, Gunnewiek PJAK, Pospisek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221PubMedCrossRefGoogle Scholar
  58. Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435PubMedCrossRefGoogle Scholar
  59. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, Deboy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren QH, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu CH, Zafar N, Zhou LW, Kuske CR (2009) Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these Microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCentralPubMedCrossRefGoogle Scholar
  60. Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by Pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76:6751–6759PubMedCentralPubMedCrossRefGoogle Scholar
  61. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  62. Zimmermann J, Gonzalez JM, Saiz-Jimenez C (2006) Epilithic biofilms in Saint Callixtus Catacombs (Rome) harbour a broad spectrum of Acidobacteria. Antonie Van Leeuwenhoek 89:203–208PubMedCrossRefGoogle Scholar
  63. Zimmermann J, Portillo MC, Serrano L, Ludwig W, Gonzalez JM (2012) Acidobacteria in Freshwater Ponds at Donana national park, Spain. Microbial Ecol 63:844–855CrossRefGoogle Scholar
  64. Zul D, Denzel S, Kotz A, Overmann J (2007) Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microbiol 73:6916–6929PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesClemson UniversityClemsonUSA

Personalised recommendations