The Family Saprospiraceae

  • Simon Jon McIlroyEmail author
  • Per Halkjær Nielsen
Reference work entry


The Saprospiraceae, a family within the order Sphingobacteriales and the phylum Bacteroidetes, embrace the genera Saprospira, Lewinella, Haliscomenobacter, Aureispira, “Rubidimonas,” and “Portibacter.” The composition of the family, and delineation of genera and species, is largely defined by 16S rRNA gene phylogeny. Most are isolated from aquatic environments, predominantly marine associated but also freshwater and activated sludge. Isolates and in situ strains have a demonstrated ability for the hydrolysis and utilization of complex carbon sources, with the helical gliding strains also associated with predation of other bacteria and algae. Family members are likely important in the breakdown of complex organic compounds in the environment. Such a role is at least demonstrated in situ for activated sludge wastewater treatment systems where these organisms are frequently observed in abundance.


Activate Sludge Cluster Regularly Interspaced Short Palindromic Repeat Algicidal Activity Algicidal Bacterium Marine Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aasen AJ, Jensen SL (1966) The carotenoids of Flexibacteria II. A new xanthophyll from Saprospira grandis. Acta Chem Scand 20:811–819PubMedGoogle Scholar
  2. Aizawa S-I (2005) Bacterial gliding motility: visualizing invisible machinery. ASM News 71:71–76Google Scholar
  3. Ashton PJ, Robarts RD (1987) Apparent predation of Microcystis aeruginosa Kütz. Emend elenkin by a Saprospira-like bacterium in a hypertrophic lake (Hartbeespoort Dam, South Africa). J Limnol Soc South Afr 13:44–47Google Scholar
  4. Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5:590–600PubMedCentralPubMedGoogle Scholar
  5. Crombach WHJ, van Veen WL, van der Vlies AW, Bots WCPM (1974) DNA base composition of some sheathed bacteria. Antonie Van Leeuwenhoek 40:217–220PubMedGoogle Scholar
  6. Daims H, Stoecker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor & Francis, New York, pp 213–239Google Scholar
  7. Daligault H, Lapidus A, Zeytun A, Nolan M, Lucas S, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Rohde M, Verbarg S, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T (2011) Complete genome sequence of Haliscomenobacter hydrossis type strain (O). Stand Genomic Sci 4:352–360PubMedCentralPubMedGoogle Scholar
  8. Dawson RMC, Elliott DC, Elliott WH, Jones KM (1972) Data for biochemical research. Clarendon, OxfordGoogle Scholar
  9. Delk AS, Dekker CA (1972) Characterization of rhapidosomes of Saprospira grandis. J Mol Biol 64:287–295PubMedGoogle Scholar
  10. Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934Google Scholar
  11. Furusawa G, Yoshikawa T, Yasuda A, Sakata T (2003) Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol 49:92–100PubMedGoogle Scholar
  12. Furusawa G, Yoshikawa T, Takano Y, Mise K, Furusawa I, Okuno T, Sakata T (2005) Characterization of cytoplasmic fibril structures found in gliding cells of Saprospira sp. Can J Microbiol 51:875–880PubMedGoogle Scholar
  13. Garrity GM, Holt J (2001) Taxonomic outline of the Archaea and Bacteria. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 155–166Google Scholar
  14. Gaval G, Pernelle JJ (2003) Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Water Res 37:1991–2000PubMedGoogle Scholar
  15. Gherna R, Woese CR (1992) A partial phylogenetic analysis of the “Flavobacter-Bacteroides” phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15:513–521PubMedGoogle Scholar
  16. Gross J (1911) Über freilebende Spironemaceen. Mitt Zool Stat Neapel 20:188–203Google Scholar
  17. Hahn MW, Schauer M (2007) ‘Candidatus Aquirestis calciphila’ and ‘Candidatus Haliscomenobacter calcifugiens’, filamentous, planktonic bacteria inhabiting natural lakes. Int J Syst Evol Microbiol 57:936–940PubMedGoogle Scholar
  18. Hamana K, Nakagawa Y (2001) Polyamine distribution profiles in eighteen genera phylogenetically located within the Flavobacterium-Flexibacter-Cytophaga complex. Microbios 106:7–17PubMedGoogle Scholar
  19. Hamana K, Itoh T, Benno Y, Hayashi H (2008) Polyamine distribution profiles of new members of the phylum Bacteroidetes. J Gen Appl Microbiol 54:229–236PubMedGoogle Scholar
  20. Holt J (1989) Genus Herpetosiphon Holt and Lewin 1965, 2408. In: Staley JT, Bryant MP, Pfenning N, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2136–2138Google Scholar
  21. Hosoya R, Hamana K (2003) Absence of cellular triamines in four novel Flavobacteria located in Flavobacterium - Flexibacter - Cytophaga complex. Ann Gunma Health Sci 24:13–16Google Scholar
  22. Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A (2006) Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56:2931–2935PubMedGoogle Scholar
  23. Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A (2007) Aureispira maritima sp. nov., isolated from marine barnacle debris. Int J Syst Evol Microbiol 57:1948–1951PubMedGoogle Scholar
  24. Iwamoto K, Yoshikawa T, Sakata T (2000) DNA-DNA hybridization and RFLP analysis of algicidal filamentous bacteria isolated from marine environments. Suisanzoshoku 48:123–130Google Scholar
  25. Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems, 3rd edn. CRC Press LLC, LondonGoogle Scholar
  26. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedGoogle Scholar
  27. Kämpfer P (1995) Physiological and chemotaxonomic characterization of filamentous bacteria belonging to the genus Haliscomenobacter. Syst Appl Microbiol 18:363–367Google Scholar
  28. Kämpfer P (2011) Genus III. Haliscomenobacter van Veen, van der Kooy, Geuze and van der Vlies 1973, 213. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 363–366Google Scholar
  29. Kämpfer P, Weltin D, Hoffmeister D, Dott W (1995) Growth requirements of filamentous bacteria isolated from bulking and scumming sludge. Water Res 29:1585–1588Google Scholar
  30. Kang Y-H, Jung SW, Jo SH, Han MS (2011) Field assessment of the potential of algicidal bacteria against diatom blooms. Biocontrol Sci Technol 21:969–984Google Scholar
  31. Khan ST, Fukunaga Y, Nakagawa Y, Harayama S (2007) Emended descriptions of the genus Lewinella and of Lewinella cohaerens, Lewinella nigricans and Lewinella persica, and description of Lewinella lutea sp. nov. and Lewinella marina sp. nov. Int J Syst Evol Microbiol 57:2946–2951PubMedGoogle Scholar
  32. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  33. Kojima H, Koizumi Y, Fukui M (2006) Community structure of bacteria associated with sheaths of freshwater and brackish Thioploca species. Microb Ecol 52:765–773PubMedGoogle Scholar
  34. Kong Y, Xia Y, Nielsen J, Nielsen P (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology 153:4061–4073PubMedGoogle Scholar
  35. Kotay SM, Datta T, Choi J, Goel R (2011) Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Res 45:694–704PubMedGoogle Scholar
  36. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Krooneman J, Larsen P, Thomsen T, Nielsen P (2008) Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. Microbiology 154:886–894PubMedGoogle Scholar
  37. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (2011) Family III. Saprospiraceae fam. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 358–370Google Scholar
  38. Krul JM (1977) Experiments with Haliscomenobacter hydrossis in continuous culture without and with Zoogloea ramigera. Water Res 11:197–204Google Scholar
  39. Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13:655–665PubMedGoogle Scholar
  40. Lee SD (2006) Kineococcus marinus sp. nov., isolated from marine sediment of the coast of Jeju, Korea. Int J Syst Evol Microbiol 56:1279–1283PubMedGoogle Scholar
  41. Lee SD (2007) Lewinella agarilytica sp. nov., a novel marine bacterium of the phylum Bacteroidetes, isolated from beach sediment. Int J Syst Evol Microbiol 57:2814–2818PubMedGoogle Scholar
  42. Lewin RA (1960) A Spirochaeta phage. Nature 186:901–902PubMedGoogle Scholar
  43. Lewin RA (1962) Saprospira grandis Gross; and suggestions for reclassifying helical, apochlorotic, gliding organisms. Can J Microbiol 8:555–563Google Scholar
  44. Lewin RA (1963) Rod-shaped particles in Saprospira. Nature 198:103–104Google Scholar
  45. Lewin RA (1965a) Isolation and some physical properties of Saprospira thermalis. Can J Microbiol 11:77–86PubMedGoogle Scholar
  46. Lewin RA (1965b) Freshwater species of Saprospira. Can J Microbiol 11:135–139PubMedGoogle Scholar
  47. Lewin RA (1969) A classification of the Flexibacteria. J Gen Microbiol 58:189–206PubMedGoogle Scholar
  48. Lewin RA (1970) New Herpetosiphon species (Flexibacteralis). Can J Microbiol 16:517–520PubMedGoogle Scholar
  49. Lewin RA (1972) Growth and nutrition of Saprospira grandis Gross (Flexibacterales). Can J Microbiol 18:361–365PubMedGoogle Scholar
  50. Lewin RA (1997) Saprospira grandis: a flexibacterium that can catch bacterial prey by “ixotrophy”. Microb Ecol 34:232–236PubMedGoogle Scholar
  51. Lewin RA (2011) Genus I. Saprospira Gross 1911, 202. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 359–361Google Scholar
  52. Lewin RA, Lounsbery DM (1969) Isolation, cultivation and characterization of Flexibacteria. J Gen Microbiol 58:145–170PubMedGoogle Scholar
  53. Lewin RA, Crothers DM, Correll DL, Reimann BE (1964) A phage infecting Saprospira grandis. Can J Microbiol 10:75–85PubMedGoogle Scholar
  54. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K-H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142:1097–1106PubMedGoogle Scholar
  55. Markowitz VM, Chen IA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the intergrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122PubMedCentralPubMedGoogle Scholar
  56. Mavromatis K, Chertkov O, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Bruce D, Goodwin LA, Pitluck S, Huntemann M, Liolios K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Brambilla EM, Rohde M, Spring S, Goker M, Detter JC, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T (2012) Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1). Stand Genomic Sci 6:210–219PubMedCentralPubMedGoogle Scholar
  57. Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144PubMedGoogle Scholar
  58. Mielczarek AT, Kragelund C, Eriksen PS, Nielsen PH (2012) Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal. Water Res 46:3781–3795PubMedGoogle Scholar
  59. Mincer TJ, Spyere A, Jensen PR, Fenical W (2004) Phylogenetic analyses and diterpenoid production by marine bacteria of the genus Saprospira. Curr Microbiol 49:300–307PubMedGoogle Scholar
  60. Morgenroth E, Kommedal R, Harremoës P (2002) Processes and modelling of hydrolysis of particulate organic matter in aerobic wastewater treatment – a review. Water Sci Technol 45(6):25–40PubMedGoogle Scholar
  61. Mulder EG, Deinema MH (2006) The genus Haliscomenobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, Singapore, pp 602–604Google Scholar
  62. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49PubMedCentralPubMedGoogle Scholar
  63. Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33:969–998PubMedGoogle Scholar
  64. Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44:5070–5088PubMedGoogle Scholar
  65. O’Sullivan LA, Weightman AJ, Fry JC (2002) New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68:201–210PubMedCentralPubMedGoogle Scholar
  66. Oh HM, Lee K, Cho JC (2009) Lewinella antarctica sp. nov., a marine bacterium isolated from Antarctic seawater. Int J Syst Evol Microbiol 59:65–68PubMedGoogle Scholar
  67. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579PubMedCentralPubMedGoogle Scholar
  68. Paster BJ, Ludwig W, Weisburg WG, Stackebrandt E, Hespell RB, Hahn CM, Reichenbach H, Stetter KO, Woese CR (1985) A phylogenetic grouping of the Bacteroides, Cytophagas, and certain Flavobacteria. Syst Appl Microbiol 6:34–42Google Scholar
  69. Pernelle JJ, Gaval G, Cotteux E, Duchene P (2001) Influence of transient substrate overloads on the proliferation of filamentous bacterial populations in an activated sludge pilot plant. Water Res 35:129–134PubMedGoogle Scholar
  70. Pernthaler J, Zollner E, Warnecke F, Jurgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70:6272–6281PubMedCentralPubMedGoogle Scholar
  71. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner F (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:188–196Google Scholar
  72. Rashidan KK, Bird DF (2001) Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol 41:97–105PubMedGoogle Scholar
  73. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
  74. Reichenbach H (1980) Saprospira grandis (Leucotrichales): Wachstum und Bewegung. Publik Wiss Film Sekt Biol 13:1–21Google Scholar
  75. Reichenbach H (1989) Genus Saprospira Gross 1911, 202. In: Staley JT, Bryant MP, Pfenning N, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2077–2082Google Scholar
  76. Reichenbach H (2006) The genus Saprospira. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes. Springer, Singapore, pp 591–601Google Scholar
  77. Reichenbach H, Dworkin M (1981) Introduction to the gliding bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, New York, pp 315–327Google Scholar
  78. Sakata T, Yasumoto H (1991) Colony formation by algicidal Saprospira sp. on marine agar plates. Nippon Suisan Gakkaishi 57:2139–2143Google Scholar
  79. Sakata T, Fujita Y, Yasumoto H (1991) Plaque formation by algicidal Saprospira sp. on a lawn of Chaetoceros ceratosporum. Nippon Suisan Gakkaishi 57:1147–1152Google Scholar
  80. Sanfilippo A, Lewin RA (1970) Preservation of viable flexibacteria at low temperatures. Can J Microbiol 16:441–444PubMedGoogle Scholar
  81. Sangkhobol V, Skerman VBD (1981) Saprospira species - natural predators. Curr Microbiol 5:169–174Google Scholar
  82. Saw JH, Yuryev A, Kanbe M, Hou S, Young AG, Aizawa S, Alam M (2012) Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium. Stand Genomic Sci 6:84–93PubMedCentralPubMedGoogle Scholar
  83. Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940PubMedCentralPubMedGoogle Scholar
  84. Schauer M, Kamenik C, Hahn MW (2005) Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes). Appl Environ Microbiol 71:5900–5907PubMedCentralPubMedGoogle Scholar
  85. Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72:4704–4712PubMedCentralPubMedGoogle Scholar
  86. Seviour EM, McIlroy SJ, Seviour RJ (2010) Descriptions of activated sludge organisms. In: Seviour RJ, Nielsen PH (eds) Microbial ecology of activated sludge. IWA, London, pp 453–487Google Scholar
  87. Shi M, Zou L, Liu X, Gao Y, Zhang Z, Wu W, Wen D, Chen Z, An C (2006) A novel bacterium Saprospira sp. strain PdY3 forms bundles and lyses cyanobacteria. Front Biosci 11:1916–1923PubMedGoogle Scholar
  88. Sladká A, Ottová V (1973) Filamentous organisms in activated sludge. Hydrobiologia 43:285–299Google Scholar
  89. Sly LI, Taghavi M, Fegan M (1998) Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 48(Pt 3):731–737PubMedGoogle Scholar
  90. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer K-H, Amann R (1999) Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1:125–135PubMedGoogle Scholar
  91. Spyere A, Rowley DC, Jensen PR, Fenical W (2003) New neoverrucosane diterpenoids produced by the marine gliding bacterium Saprospira grandis. J Nat Prod 66:818–822PubMedGoogle Scholar
  92. van der Waarde J, Krooneman J, Geurkink B, van der Werf A, Eikelboom D, Beimfohr C, Snaidr J, Levantesi C, Tandoi V (2002) Molecular monitoring of bulking sludge in industrial wastewater treatment plants. Water Sci Technol 46(1–2):551–558PubMedGoogle Scholar
  93. van Veen WL (1973) Bacteriology of activated sludge, in particular the filamentous bacteria. Antonie Van Leeuwenhoek 39:189–205PubMedGoogle Scholar
  94. van Veen WL, van der Kooij D, Geuze ECWA, van der Vlies AW (1973) Investigations on the sheathed bacterium Haliscomenobacter hydrossis gen.n., sp.n., isolated from activated sludge. Antonie Van Leeuwenhoek 39:207–216PubMedGoogle Scholar
  95. Wagner M, Amann R, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N, Schleifer K-H (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417Google Scholar
  96. Weller R, Glöckner F, Amann R (2000) 16S rRNA-targeted oligonucleotide probes for the in situ detection of members of the phylum Cytophaga-Flavobacterium-Bacteroides. Syst Appl Microbiol 23:107–114PubMedGoogle Scholar
  97. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralPubMedGoogle Scholar
  98. Xia Y, Kong Y, Nielsen PH (2007) In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165PubMedGoogle Scholar
  99. Xia Y, Kong Y, Thomsen TR, Nielsen PH (2008) Identification and ecophysiological characterization of epiphytic protein hydrolyzing Saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl Environ Microbiol 74:2229–2238PubMedCentralPubMedGoogle Scholar
  100. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer K-H, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  101. Yokozeki K, Hara S (2005) A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. J Biotechnol 115:211–220PubMedGoogle Scholar
  102. Yokozeki K, Abe I, Hara S (2006) Method for producing dipeptides. United States Patent Application: US 2006/0177893Google Scholar
  103. Yokozeki K, Ohno A, Hara S, Abe I (2012) Method for producing alpha-l-aspartyl-l-phenylalanine-beta-ester and method for producing alpha-l-aspartyl-l-phenylalanine-alpha-methyl ester. European Patent Specification: 09011830.8Google Scholar
  104. Yoon J, Yasumoto-Hirose M, Matsuo Y, Nozawa M, Matsuda S, Kasai H, Yokota A (2007) Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum ‘Verrucomicrobia’, isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 57:1377–1385PubMedGoogle Scholar
  105. Yoon J, Katsuta A, Kasai H (2012a) Rubidimonas crustatorum gen. nov., sp. nov., a novel member of the family Saprospiraceae isolated from a marine crustacean. Antonie Van Leeuwenhoek 101:461–467PubMedGoogle Scholar
  106. Yoon J, Matsuo Y, Kasai H, Yokota A (2012b) Portibacter lacus gen. nov., sp.nov., a new member of the family Saprospiraceae isolated from a saline lake. J Gen Appl Microbiol 58:191–197PubMedGoogle Scholar
  107. Yoshikawa T, Nakahara M, Tabata A, Kokumai S, Furusawa G, Sakata T (2008) Characterization and expression of Saprospira cytoplasmic fibril protein (SCFP) gene from algicidal Saprospira spp. strains. Fish Sci 74:1109–1117Google Scholar
  108. Ziegler M, Lange M, Dott W (1990) Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge. Water Res 24:1437–1451Google Scholar
  109. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biotechnology, Chemistry, and Environmental EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations